Please use this identifier to cite or link to this item: https://doi.org/10.3389/fnins.2011.00018
DC FieldValue
dc.titleRole of neuronal Ras activity in adult hippocampal neurogenesis and cognition
dc.contributor.authorManns, M
dc.contributor.authorLeske, O
dc.contributor.authorGottfried, S
dc.contributor.authorBichler, Z
dc.contributor.authorLafenêtre, P
dc.contributor.authorWahle, P
dc.contributor.authorHeumann, R
dc.date.accessioned2020-10-27T11:29:46Z
dc.date.available2020-10-27T11:29:46Z
dc.date.issued2011
dc.identifier.citationManns, M, Leske, O, Gottfried, S, Bichler, Z, Lafenêtre, P, Wahle, P, Heumann, R (2011). Role of neuronal Ras activity in adult hippocampal neurogenesis and cognition. Frontiers in Neuroscience (FEB) : 18. ScholarBank@NUS Repository. https://doi.org/10.3389/fnins.2011.00018
dc.identifier.issn16624548
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181620
dc.description.abstractHippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space. © 2011 Manns, Leske, Gottfried, Bichler, Lafenêtre, Wahle and Heumann.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subject1,2,3,6 tetrahydro 1 methyl 4 phenylpyridine
dc.subjectbrain derived neurotrophic factor
dc.subjectcaspase 3
dc.subjectgrowth factor
dc.subjectguanine nucleotide binding protein
dc.subjecthormone
dc.subjectmessenger RNA
dc.subjectneuropeptide
dc.subjectneurotransmitter
dc.subjectRas protein
dc.subjectbehavior
dc.subjectbrain development
dc.subjectcognition
dc.subjectcognitive defect
dc.subjectdentate gyrus
dc.subjectexercise
dc.subjectgene expression
dc.subjecthippocampus
dc.subjectmemory
dc.subjectnerve cell differentiation
dc.subjectnervous system development
dc.subjectnonhuman
dc.subjectreview
dc.subjectshort term memory
dc.subjecttransgenic mouse
dc.subjectwild type
dc.typeReview
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.3389/fnins.2011.00018
dc.description.sourcetitleFrontiers in Neuroscience
dc.description.issueFEB
dc.description.page18
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fnins_2011_00018.pdf635.27 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons