Please use this identifier to cite or link to this item: https://doi.org/10.3389/fncel.2015.00275
DC FieldValue
dc.titleAn excitatory GABA loop operating in vivo
dc.contributor.authorAstorga, G
dc.contributor.authorBao, J
dc.contributor.authorMarty, A
dc.contributor.authorAugustine, G.J
dc.contributor.authorFranconville, R
dc.contributor.authorJalil, A
dc.contributor.authorBradley, J
dc.contributor.authorLlano, I
dc.date.accessioned2020-10-27T10:56:25Z
dc.date.available2020-10-27T10:56:25Z
dc.date.issued2015
dc.identifier.citationAstorga, G, Bao, J, Marty, A, Augustine, G.J, Franconville, R, Jalil, A, Bradley, J, Llano, I (2015). An excitatory GABA loop operating in vivo. Frontiers in Cellular Neuroscience 9 (JULY) : 275. ScholarBank@NUS Repository. https://doi.org/10.3389/fncel.2015.00275
dc.identifier.issn16625102
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181442
dc.description.abstractWhile it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers (PFs) of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of PFs at submaximal stimulus intensities leads to GABA release from molecular layer interneurons (MLIs), thus creating a positive feedback loop that enhances excitation near the center of an activated PF bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice. © 2015 Astorga, Bao, Marty, Augustine, Franconville, Jalil, Bradley and Llano.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subject3 amino 2 (3 carboxypropyl) 6 (4 methoxyphenyl)pyridazinium bromide
dc.subject4 aminobutyric acid
dc.subject4 aminobutyric acid A receptor
dc.subject5, 7 dichlorokynurenic acid
dc.subjectchloride
dc.subjectcyclic AMP
dc.subjectneuronal nitric oxide synthase
dc.subjectrhodopsin
dc.subjecttetrodotoxin
dc.subjectunclassified drug
dc.subjectadult
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectArticle
dc.subjectbrain depth stimulation
dc.subjectbrain electrophysiology
dc.subjectcerebellum cortex
dc.subjectcontrolled study
dc.subjectcraniotomy
dc.subjectevoked somatosensory response
dc.subjectexcitatory junction potential
dc.subjectfluorescence microscopy
dc.subjectGABAergic transmission
dc.subjectimmunocytochemistry
dc.subjectinterneuron
dc.subjectiontophoresis
dc.subjectmouse
dc.subjectnonhuman
dc.subjectphotostimulation
dc.subjectprotein expression
dc.subjectspike wave
dc.subjectstimulus response
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.3389/fncel.2015.00275
dc.description.sourcetitleFrontiers in Cellular Neuroscience
dc.description.volume9
dc.description.issueJULY
dc.description.page275
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fncel_2015_00275.pdf2.99 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons