Please use this identifier to cite or link to this item: https://doi.org/10.3389/fncir.2016.00105
DC FieldValue
dc.titleMaladaptive synaptic plasticity in L-DOPA-induced dyskinesia
dc.contributor.authorWang, Q
dc.contributor.authorZhang, W
dc.date.accessioned2020-10-27T10:33:38Z
dc.date.available2020-10-27T10:33:38Z
dc.date.issued2016
dc.identifier.citationWang, Q, Zhang, W (2016). Maladaptive synaptic plasticity in L-DOPA-induced dyskinesia. Frontiers in Neural Circuits 10 (DEC) : 105. ScholarBank@NUS Repository. https://doi.org/10.3389/fncir.2016.00105
dc.identifier.issn16625110
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/181319
dc.description.abstractThe emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease (PD) could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs) in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1) and basal ganglia (BG) output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD. © 2016 Wang and Zhang.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectadenosine A2a receptor
dc.subjectdopamine 2 receptor
dc.subjectmitogen activated protein kinase 3
dc.subjectn methyl dextro aspartic acid receptor
dc.subjectantiparkinson agent
dc.subjectdopamine
dc.subjectlevodopa
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectbasal ganglion
dc.subjectbrain region
dc.subjectcell population
dc.subjectcholinergic nerve cell
dc.subjectcorpus striatum
dc.subjectdendritic spine
dc.subjectdopamine release
dc.subjectdopamine uptake
dc.subjecthistone acetylation
dc.subjectimmunoreactivity
dc.subjectinterneuron
dc.subjectlevodopa-induced dyskinesia
dc.subjectlong term depression
dc.subjectlong term potentiation
dc.subjectnerve cell
dc.subjectnerve cell plasticity
dc.subjectnerve degeneration
dc.subjectnonhuman
dc.subjectParkinson disease
dc.subjectpathogenesis
dc.subjectprotein expression
dc.subjectprotein phosphorylation
dc.subjectReview
dc.subjectsynapse
dc.subjectupregulation
dc.subjectanimal
dc.subjectdrug effects
dc.subjectdyskinesia
dc.subjecthuman
dc.subjectmetabolism
dc.subjectmotor cortex
dc.subjectnerve cell plasticity
dc.subjectAnimals
dc.subjectAntiparkinson Agents
dc.subjectBasal Ganglia
dc.subjectDopamine
dc.subjectDyskinesia, Drug-Induced
dc.subjectHumans
dc.subjectLevodopa
dc.subjectMotor Cortex
dc.subjectNeuronal Plasticity
dc.typeReview
dc.contributor.departmentBIOMEDICAL ENGINEERING
dc.description.doi10.3389/fncir.2016.00105
dc.description.sourcetitleFrontiers in Neural Circuits
dc.description.volume10
dc.description.issueDEC
dc.description.page105
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3389_fncir_2016_00105.pdf1.28 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons