Please use this identifier to cite or link to this item: https://doi.org/10.18632/oncotarget.5362
DC FieldValue
dc.titleTQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling
dc.contributor.authorKe, X
dc.contributor.authorZhao, Y
dc.contributor.authorLu, X
dc.contributor.authorWang, Z
dc.contributor.authorLiu, Y
dc.contributor.authorRen, M
dc.contributor.authorLu, G
dc.contributor.authorZhang, D
dc.contributor.authorSun, Z
dc.contributor.authorXu, Z
dc.contributor.authorSong, J.H
dc.contributor.authorCheng, Y
dc.contributor.authorMeltzer, S.J
dc.contributor.authorHe, S
dc.date.accessioned2020-10-27T05:46:04Z
dc.date.available2020-10-27T05:46:04Z
dc.date.issued2015
dc.identifier.citationKe, X, Zhao, Y, Lu, X, Wang, Z, Liu, Y, Ren, M, Lu, G, Zhang, D, Sun, Z, Xu, Z, Song, J.H, Cheng, Y, Meltzer, S.J, He, S (2015). TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 6 (32) : 32610-32621. ScholarBank@NUS Repository. https://doi.org/10.18632/oncotarget.5362
dc.identifier.issn19492553
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180934
dc.description.abstractThymoquinone (TQ) has been reported to possess anti-tumor activity in various types of cancer. However, its effects and molecular mechanism of action in hepatocellular carcinoma (HCC) are still not completely understood. We observed that TQ inhibited tumor cell growth in vitro, where treatment with TQ arrested the cell cycle in G1 by upregulating p21 and downregulating cyclinD1 and CDK2 expression; moreover, TQ induced apoptosis by decreasing expression of Bcl-2 and increasing expression of Bax. Simultaneously, TQ demonstrated a suppressive impact on the Notch pathway, where overexpression of NICD1 reversed the inhibitory effect of TQ on cell proliferation, thereby attenuating the repressive effects of TQ on the Notch pathway, cyclinD1, CDK2 and Bcl-2, and also diminishing upregulation of p21 and Bax. In a xenograft model, TQ inhibited HCC growth in nude mice; this inhibitory effect in vivo, as well as of HCC cell growth in vitro, was associated with a discernible decline in NICD1 and Bcl-2 levels and a dramatic rise in p21 expression. In conclusion, TQ inhibits HCC cell growth by inducing cell cycle arrest and apoptosis, achieving these effects by repression of the Notch signaling pathway, suggesting that TQ represents a potential preventive or therapeutic agent in HCC patients.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcyclin D1
dc.subjectcyclin dependent kinase 2
dc.subjectNotch receptor
dc.subjectprotein Bax
dc.subjectprotein bcl 2
dc.subjectprotein p21
dc.subjectthymoquinone
dc.subjectantineoplastic agent
dc.subjectapoptosis regulatory protein
dc.subjectbenzoquinone derivative
dc.subjectcell cycle protein
dc.subjectNOTCH1 protein, human
dc.subjectNotch1 receptor
dc.subjectthymoquinone
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectapoptosis
dc.subjectArticle
dc.subjectcancer inhibition
dc.subjectcell proliferation
dc.subjectcell viability
dc.subjectcontrolled study
dc.subjectdown regulation
dc.subjectG1 phase cell cycle checkpoint
dc.subjecthepatocellular carcinoma cell line
dc.subjecthuman
dc.subjecthuman cell
dc.subjectin vitro study
dc.subjectin vivo study
dc.subjectliver cell carcinoma
dc.subjectmale
dc.subjectmouse
dc.subjectnonhuman
dc.subjectprotein blood level
dc.subjectprotein expression
dc.subjectsignal transduction
dc.subjecttumor growth
dc.subjectupregulation
dc.subjectanimal
dc.subjectBagg albino mouse
dc.subjectCarcinoma, Hepatocellular
dc.subjectcell cycle checkpoint
dc.subjectdose response
dc.subjectdrug effects
dc.subjectdrug screening
dc.subjectgene expression regulation
dc.subjectgenetic transfection
dc.subjectgenetics
dc.subjectHep-G2 cell line
dc.subjectLiver Neoplasms
dc.subjectmetabolism
dc.subjectnude mouse
dc.subjectpathology
dc.subjectsignal transduction
dc.subjecttime factor
dc.subjecttumor volume
dc.subjectAnimals
dc.subjectAntineoplastic Agents, Phytogenic
dc.subjectApoptosis
dc.subjectApoptosis Regulatory Proteins
dc.subjectBenzoquinones
dc.subjectCarcinoma, Hepatocellular
dc.subjectCell Cycle Checkpoints
dc.subjectCell Cycle Proteins
dc.subjectCell Proliferation
dc.subjectDose-Response Relationship, Drug
dc.subjectDown-Regulation
dc.subjectGene Expression Regulation, Neoplastic
dc.subjectHep G2 Cells
dc.subjectHumans
dc.subjectLiver Neoplasms
dc.subjectMale
dc.subjectMice, Inbred BALB C
dc.subjectMice, Nude
dc.subjectReceptor, Notch1
dc.subjectSignal Transduction
dc.subjectTime Factors
dc.subjectTransfection
dc.subjectTumor Burden
dc.subjectXenograft Model Antitumor Assays
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.18632/oncotarget.5362
dc.description.sourcetitleOncotarget
dc.description.volume6
dc.description.issue32
dc.description.page32610-32621
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_18632_oncotarget_5362.pdf4.18 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons