Please use this identifier to cite or link to this item: https://doi.org/10.3892/ijo.2012.1494
DC FieldValue
dc.titleCombination of the ERK inhibitor AZD6244 and low-dose sorafenib in a xenograft model of human renal cell carcinoma
dc.contributor.authorYuen, J.S.P
dc.contributor.authorSim, M.Y
dc.contributor.authorSim, H.G
dc.contributor.authorChong, T.W
dc.contributor.authorLau, W.K.O
dc.contributor.authorCheng, C.W.S
dc.contributor.authorOng, R.W
dc.contributor.authorHuynh, H
dc.date.accessioned2020-10-27T04:53:08Z
dc.date.available2020-10-27T04:53:08Z
dc.date.issued2012
dc.identifier.citationYuen, J.S.P, Sim, M.Y, Sim, H.G, Chong, T.W, Lau, W.K.O, Cheng, C.W.S, Ong, R.W, Huynh, H (2012). Combination of the ERK inhibitor AZD6244 and low-dose sorafenib in a xenograft model of human renal cell carcinoma. International Journal of Oncology 41 (2) : 712-720. ScholarBank@NUS Repository. https://doi.org/10.3892/ijo.2012.1494
dc.identifier.issn1019-6439
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180827
dc.description.abstractSorafenib, a multikinase inhibitor, is currently used as monotherapy for advanced renal cell carcinoma (RCC). However, adverse effects associated with its use have been experienced by some patients. In this study, we examined the antitumor and antiangiogenic activities of low-dose sorafenib in combination with the MEK inhibitor AZD6244 (sorafenib/AZD6244) in a preclinical model of RCC. Primary RCC 08-0910 and RCC 786-0 cells as well as patient-derived RCC models were used to study the antitumor and antiangiogenic activities of sorafenib/AZD6244. Changes of biomarkers relevant to angiogenesis and cell cycle were determined by western immunoblotting. Microvessel density, apoptosis and cell proliferation were analyzed by immunohistochemistry. Treatment of RCC 786-0 cells with sorafenib/AZD6244 resulted in G1 cell cycle arrest and blockade of serum-induced cell migration. Sorafenib/AZD6244 induced apoptosis in primary RCC 08-0910 cells at low concentrations. In vivo addition of AZD6244 to sorafenib significantly augmented the antitumor activity of sorafenib and allowed dose reduction of sorafenib without compromising its antitumor activity. Sorafenib/AZD6244 potently inhibited angiogenesis and phosphorylation of VEGFR-2, PDGFR-? and ERK, p90RSK, p70S6K, cdk-2 and retinoblastoma. Sorafenib/AZD6244 also caused upregulation of p27, Bad and Bim but downregulation of survivin and cyclin B1. These resulted in a reduction in cellular proliferation and the induction of tumor cell apoptosis. Our findings showed that AZD6244 and sorafenib complement each other to inhibit tumor growth. This study provides sound evidence for the clinical investigation of low-dose sorafenib in combination with AZD6244 in patients with advanced RCC.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectBIM protein
dc.subjectcyclin B1
dc.subjectcyclin dependent kinase 2
dc.subjectmitogen activated protein kinase
dc.subjectp70s6k protein
dc.subjectp90rsk protein
dc.subjectplatelet derived growth factor beta receptor
dc.subjectprotein
dc.subjectprotein BAD
dc.subjectprotein p27
dc.subjectselumetinib
dc.subjectsorafenib
dc.subjectsurvivin
dc.subjectunclassified drug
dc.subjectvasculotropin receptor 2
dc.subjectangiogenesis
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectanimal tissue
dc.subjectantiangiogenic activity
dc.subjectantineoplastic activity
dc.subjectapoptosis
dc.subjectarticle
dc.subjectcancer combination chemotherapy
dc.subjectcancer inhibition
dc.subjectcell cycle arrest
dc.subjectcell cycle G0 phase
dc.subjectcell cycle G1 phase
dc.subjectcell cycle G2 phase
dc.subjectcell cycle S phase
dc.subjectcell migration
dc.subjectcell proliferation
dc.subjectconcentration response
dc.subjectcontrolled study
dc.subjectdown regulation
dc.subjectdrug dose reduction
dc.subjectdrug efficacy
dc.subjecthuman
dc.subjecthuman cell
dc.subjectimmunoblotting
dc.subjectimmunohistochemistry
dc.subjectkidney carcinoma
dc.subjectlow drug dose
dc.subjectmale
dc.subjectmicrovasculature
dc.subjectmouse
dc.subjectnonhuman
dc.subjectpriority journal
dc.subjectprotein phosphorylation
dc.subjectretinoblastoma
dc.subjecttumor volume
dc.subjecttumor xenograft
dc.subjectupregulation
dc.subjectWestern blotting
dc.subjectAngiogenesis Inhibitors
dc.subjectAnimals
dc.subjectAntineoplastic Combined Chemotherapy Protocols
dc.subjectBenzenesulfonates
dc.subjectBenzimidazoles
dc.subjectCarcinoma, Renal Cell
dc.subjectCell Proliferation
dc.subjectHumans
dc.subjectKidney Neoplasms
dc.subjectMice
dc.subjectMitogen-Activated Protein Kinase 3
dc.subjectPhosphorylation
dc.subjectPoly(ADP-ribose) Polymerases
dc.subjectProtein Processing, Post-Translational
dc.subjectPyridines
dc.subjectReceptor, Platelet-Derived Growth Factor beta
dc.subjectTumor Burden
dc.subjectTumor Cells, Cultured
dc.subjectVascular Endothelial Growth Factor Receptor-2
dc.subjectXenograft Model Antitumor Assays
dc.typeArticle
dc.contributor.departmentMEDICINE
dc.contributor.departmentSURGERY
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.3892/ijo.2012.1494
dc.description.sourcetitleInternational Journal of Oncology
dc.description.volume41
dc.description.issue2
dc.description.page712-720
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3892_ijo_2012_1494.pdf946.04 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons