Please use this identifier to cite or link to this item: https://doi.org/10.1155/2013/162938
DC FieldValue
dc.titleMissing value estimation for microarray data by bayesian principal component analysis and iterative local least squares
dc.contributor.authorShi, F
dc.contributor.authorZhang, D
dc.contributor.authorChen, J
dc.contributor.authorKarimi, H.R
dc.date.accessioned2020-10-27T04:46:47Z
dc.date.available2020-10-27T04:46:47Z
dc.date.issued2013
dc.identifier.citationShi, F, Zhang, D, Chen, J, Karimi, H.R (2013). Missing value estimation for microarray data by bayesian principal component analysis and iterative local least squares. Mathematical Problems in Engineering 2013 : 162938. ScholarBank@NUS Repository. https://doi.org/10.1155/2013/162938
dc.identifier.issn1024-123X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180796
dc.description.abstractMissing values are prevalent in microarray data, they course negative influence on downstream microarray analyses, and thus they should be estimated from known values. We propose a BPCA-iLLS method, which is an integration of two commonly used missing value estimation methods - Bayesian principal component analysis (BPCA) and local least squares (LLS). The inferior row-average procedure in LLS is replaced with BPCA, and the least squares method is put into an iterative framework. Comparative result shows that the proposed method has obtained the highest estimation accuracy across all missing rates on different types of testing datasets. © 2013 Fuxi Shi et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectBayesian principal component analysis
dc.subjectIterative framework
dc.subjectLeast squares methods
dc.subjectLocal least squares
dc.subjectMicroarray analysis
dc.subjectMicroarray data
dc.subjectMissing value estimation
dc.subjectMissing values
dc.subjectAutocorrelation
dc.subjectEstimation
dc.subjectIterative methods
dc.subjectPrincipal component analysis
dc.subjectLeast squares approximations
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1155/2013/162938
dc.description.sourcetitleMathematical Problems in Engineering
dc.description.volume2013
dc.description.page162938
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1155_2013_162938.pdf2.05 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons