Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms8461
DC FieldValue
dc.titlePrintable elastic conductors with a high conductivity for electronic textile applications
dc.contributor.authorMatsuhisa, N
dc.contributor.authorKaltenbrunner, M
dc.contributor.authorYokota, T
dc.contributor.authorJinno, H
dc.contributor.authorKuribara, K
dc.contributor.authorSekitani, T
dc.contributor.authorSomeya, T
dc.date.accessioned2020-10-26T09:04:15Z
dc.date.available2020-10-26T09:04:15Z
dc.date.issued2015
dc.identifier.citationMatsuhisa, N, Kaltenbrunner, M, Yokota, T, Jinno, H, Kuribara, K, Sekitani, T, Someya, T (2015). Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications 6 : 7461. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms8461
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180459
dc.description.abstractThe development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738Scm -1 and a record high conductivity of 182Scm -1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment. © 2015 Macmillan Publishers Limited.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subject4 methyl 2 pentanone
dc.subjectcopolymer
dc.subjectfluorine
dc.subjectink
dc.subjectrubber
dc.subjectsilver
dc.subjectsurfactant
dc.subjectelectrical conductivity
dc.subjectelectronic equipment
dc.subjectfluorine
dc.subjectsensor
dc.subjectsilver
dc.subjectsubstrate
dc.subjectsurfactant
dc.subjectArticle
dc.subjectconductance
dc.subjectconductor
dc.subjectelasticity
dc.subjectelectromyogram
dc.subjectphase separation
dc.subjectprintable elastic conductor
dc.subjectscanning electron microscopy
dc.subjectsensor
dc.subjecttextile industry
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/ncomms8461
dc.description.sourcetitleNature Communications
dc.description.volume6
dc.description.page7461
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms8461.pdf2.67 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons