Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms9677
DC FieldValue
dc.titleEmbryo-scale tissue mechanics during Drosophila gastrulation movements
dc.contributor.authorRauzi, M
dc.contributor.authorKrzic, U
dc.contributor.authorSaunders, T.E
dc.contributor.authorKrajnc, M
dc.contributor.authorZiherl, P
dc.contributor.authorHufnagel, L
dc.contributor.authorLeptin, M
dc.date.accessioned2020-10-26T08:55:12Z
dc.date.available2020-10-26T08:55:12Z
dc.date.issued2015
dc.identifier.citationRauzi, M, Krzic, U, Saunders, T.E, Krajnc, M, Ziherl, P, Hufnagel, L, Leptin, M (2015). Embryo-scale tissue mechanics during Drosophila gastrulation movements. Nature Communications 6 : 8677. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms9677
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180423
dc.description.abstractMorphogenesis of an organism requires the development of its parts to be coordinated in time and space. While past studies concentrated on defined cell populations, a synthetic view of the coordination of these events in a whole organism is needed for a full understanding. Drosophila gastrulation begins with the embryo forming a ventral furrow, which is eventually internalized. It is not understood how the rest of the embryo participates in this process. Here we use multiview selective plane illumination microscopy coupled with infrared laser manipulation and mutant analysis to dissect embryo-scale cell interactions during early gastrulation. Lateral cells have a denser medial-apical actomyosin network and shift ventrally as a compact cohort, whereas dorsal cells become stretched. We show that the behaviour of these cells affects furrow internalization. A computational model predicts different mechanical properties associated with tissue behaviour: lateral cells are stiff, whereas dorsal cells are soft. Experimental analysis confirms these properties in vivo. © 2015 Macmillan Publishers Limited. All rights reserved.
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcells and cell components
dc.subjectcohort analysis
dc.subjectcomputer simulation
dc.subjectembryo
dc.subjectembryonic development
dc.subjectexperimental study
dc.subjectfly
dc.subjectmorphogenesis
dc.subjectmorphology
dc.subjectmovement
dc.subjectanimal
dc.subjectcell motion
dc.subjectcytology
dc.subjectDrosophila
dc.subjectembryology
dc.subjectfemale
dc.subjectgastrula
dc.subjectgastrulation
dc.subjectmale
dc.subjectnonmammalian embryo
dc.subjectAnimals
dc.subjectCell Movement
dc.subjectDrosophila
dc.subjectEmbryo, Nonmammalian
dc.subjectFemale
dc.subjectGastrula
dc.subjectGastrulation
dc.subjectMale
dc.typeArticle
dc.contributor.departmentBIOLOGY (NU)
dc.description.doi10.1038/ncomms9677
dc.description.sourcetitleNature Communications
dc.description.volume6
dc.description.page8677
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms9677.pdf3.81 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons