Please use this identifier to cite or link to this item: https://doi.org/10.7554/eLife.03271
DC FieldValue
dc.titleIrreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module
dc.contributor.authorMatos, J.L
dc.contributor.authorLau, O.S
dc.contributor.authorHachez, C
dc.contributor.authorCruz-Ramírez, A
dc.contributor.authorScheres, B
dc.contributor.authorBergmann, D.C
dc.date.accessioned2020-10-26T08:33:59Z
dc.date.available2020-10-26T08:33:59Z
dc.date.issued2014
dc.identifier.citationMatos, J.L, Lau, O.S, Hachez, C, Cruz-Ramírez, A, Scheres, B, Bergmann, D.C (2014). Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife 3 (41913) : 1-15. ScholarBank@NUS Repository. https://doi.org/10.7554/eLife.03271
dc.identifier.issn2050084X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180377
dc.description.abstractThe presumed totipotency of plant cells leads to questions about how specific stem cell lineages and terminal fates could be established. In the Arabidopsis stomatal lineage, a transient self-renewing phase creates precursors that differentiate into one of two epidermal cell types, guard cells or pavement cells. We found that irreversible differentiation of guard cells involves RETINOBLASTOMA-RELATED (RBR) recruitment to regulatory regions of master regulators of stomatal initiation, facilitated through interaction with a terminal stomatal lineage transcription factor, FAMA. Disrupting physical interactions between FAMA and RBR preferentially reveals the role of RBR in enforcing fate commitment over its role in cell-cycle control in this developmental context. Analysis of the phenotypes linked to the modulation of FAMA and RBR sheds new light on the way iterative divisions and terminal differentiation are coordinately regulated in a plant stem-cell lineage. © Matos et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectArabidopsis protein
dc.subjectbasic helix loop helix transcription factor
dc.subjectFAMA protein, Arabidopsis
dc.subjectprotein binding
dc.subjectRBR1 protein, Arabidopsis
dc.subjectamino acid sequence
dc.subjectArabidopsis
dc.subjectcell cycle
dc.subjectcell differentiation
dc.subjectcell lineage
dc.subjectcytology
dc.subjectgene expression regulation
dc.subjectgenetics
dc.subjectgrowth, development and aging
dc.subjectmetabolism
dc.subjectmolecular genetics
dc.subjectplant stoma
dc.subjectprotein tertiary structure
dc.subjectsequence alignment
dc.subjectAmino Acid Sequence
dc.subjectArabidopsis
dc.subjectArabidopsis Proteins
dc.subjectBasic Helix-Loop-Helix Transcription Factors
dc.subjectCell Cycle
dc.subjectCell Differentiation
dc.subjectCell Lineage
dc.subjectGene Expression Regulation, Developmental
dc.subjectGene Expression Regulation, Plant
dc.subjectMolecular Sequence Data
dc.subjectPlant Stomata
dc.subjectProtein Binding
dc.subjectProtein Structure, Tertiary
dc.subjectSequence Alignment
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.7554/eLife.03271
dc.description.sourcetitleeLife
dc.description.volume3
dc.description.issue41913
dc.description.page1-15
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_7554_eLife_03271.pdf5.73 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons