Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/16/7/073017
DC FieldValue
dc.titleA strategy for quantum algorithm design assisted by machine learning
dc.contributor.authorBang, J
dc.contributor.authorRyu, J
dc.contributor.authorYoo, S
dc.contributor.authorPawlowski, M
dc.contributor.authorLee, J
dc.date.accessioned2020-10-26T07:21:55Z
dc.date.available2020-10-26T07:21:55Z
dc.date.issued2014
dc.identifier.citationBang, J, Ryu, J, Yoo, S, Pawlowski, M, Lee, J (2014). A strategy for quantum algorithm design assisted by machine learning. New Journal of Physics 16 : 73017. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/16/7/073017
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180175
dc.description.abstractWe propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a 'quantum student' is being taught by a 'classical teacher'. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectAutomation
dc.subjectControl
dc.subjectLearning systems
dc.subjectMonte Carlo methods
dc.subjectProblem solving
dc.subjectQuantum theory
dc.subjectDecision problems
dc.subjectDeutsch-Jozsa problems
dc.subjectExponential dependence
dc.subjectHybrid simulators
dc.subjectLearning-based methods
dc.subjectQuantum algorithms
dc.subjectQuantum learning
dc.subjectQuantum-classical
dc.subjectAlgorithms
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/16/7/073017
dc.description.sourcetitleNew Journal of Physics
dc.description.volume16
dc.description.page73017
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_16_7_073017.pdf3.12 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons