Please use this identifier to cite or link to this item:
https://doi.org/10.3390/e17117713
DC Field | Value | |
---|---|---|
dc.title | From lattice Boltzmann method to lattice Boltzmann flux solver | |
dc.contributor.author | Wang, Y | |
dc.contributor.author | Yang, L | |
dc.contributor.author | Shu, C | |
dc.date.accessioned | 2020-10-26T06:54:36Z | |
dc.date.available | 2020-10-26T06:54:36Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Wang, Y, Yang, L, Shu, C (2015). From lattice Boltzmann method to lattice Boltzmann flux solver. Entropy 17 (11) : 7713-7735. ScholarBank@NUS Repository. https://doi.org/10.3390/e17117713 | |
dc.identifier.issn | 1099-4300 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/180094 | |
dc.description.abstract | Based on the lattice Boltzmann method (LBM), the lattice Boltzmann flux solver(LBFS), which combines the advantages ofconventional Navier-Stokes solvers and lattice Boltzmann solvers, was proposed recently. Specifically, LBFS applies the finite volume method to solve the macroscopic governing equations which provide solutions for macroscopic flow variables at cell centers. In the meantime, numerical fluxes at each cell interface are evaluated by local reconstruction of LBM solution.In other words, in LBFS, LBM is only locally applied at the cell interface for one streaming step. This is quite different from the conventional LBM, which is globally applied in the whole flow domain. This paper shows three different versions ofLBFS respectively for isothermal, thermal and compressible flows and their relationships with the standard LBM.In particular, the performance of isothermal LBFS in terms of accuracy, efficiency and stability is investigated by comparing it with the standard LBM. The thermal LBFS is simplified by using the D2Q4 lattice velocity model and its performance is examined by its application to simulate natural convection with high Rayleigh numbers. It is demonstrated that the compressible LBFS can be effectively used to simulate both inviscid and viscous flows by incorporating non-equilibrium effects into the process for inviscid flux reconstruction. Several numerical examples, including lid-driven cavity flow, natural convection in a square cavity at Rayleigh numbers of 107 and 108 and transonic flow around a staggered-biplane configuration, are tested onstructured or unstructured grids to examine the performance of three LBFS versions. Good agreements have been achieved with the published data, which validates the capability of LBFS in simulating a variety of flow problems. © 2015 by the authors. | |
dc.publisher | MDPI AG | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.source | Unpaywall 20201031 | |
dc.type | Article | |
dc.contributor.department | MECHANICAL ENGINEERING | |
dc.contributor.department | SOLAR ENERGY RESEARCH INST OF S'PORE | |
dc.description.doi | 10.3390/e17117713 | |
dc.description.sourcetitle | Entropy | |
dc.description.volume | 17 | |
dc.description.issue | 11 | |
dc.description.page | 7713-7735 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_3390_e17117713.pdf | 2.58 MB | Adobe PDF | OPEN | None | View/Download |
This item is licensed under a Creative Commons License