Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/17/1/013026
DC FieldValue
dc.titleInteraction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre
dc.contributor.authorKumar, R
dc.contributor.authorGokhroo, V
dc.contributor.authorDeasy, K
dc.contributor.authorMaimaiti, A
dc.contributor.authorFrawley, M.C
dc.contributor.authorPhelan, C
dc.contributor.authorChormaic, S.N
dc.date.accessioned2020-10-26T06:52:45Z
dc.date.available2020-10-26T06:52:45Z
dc.date.issued2015
dc.identifier.citationKumar, R, Gokhroo, V, Deasy, K, Maimaiti, A, Frawley, M.C, Phelan, C, Chormaic, S.N (2015). Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre. New Journal of Physics 17 : 13026. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/17/1/013026
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/180089
dc.description.abstractOptical nanofibres are used to confine light to sub-wavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magneto-optical trap for 87Rb atoms. The nanofibre, with a waist diameter of ?700 nm, supports both the fundamental and first group of higher order modes (HOMs) and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger if HOMs are also included. In particular, the signal from HOMs appears to be about six times larger than that obtained for the fundamental mode. Absorption of on-resonance, HOM probe light by the laser-cooled atoms is also observed. These advances should facilitate the realization of atom trapping schemes based on HOM interference. © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectAtoms
dc.subjectEvanescent fields
dc.subjectFiber optics
dc.subjectFluorescence
dc.subjectLaser cooling
dc.subjectLight
dc.subjectNanofibers
dc.subjectOptical fibers
dc.subjectRubidium
dc.subjectAtom trapping
dc.subjectAtomic fluorescence
dc.subjectCold atoms
dc.subjectHigher-order
dc.subjectHigher-order modes
dc.subjectLaser-cooled atoms
dc.subjectMagnetooptical traps
dc.subjectMode interactions
dc.subjectAtom lasers
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/17/1/013026
dc.description.sourcetitleNew Journal of Physics
dc.description.volume17
dc.description.page13026
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_17_1_013026.pdf3.12 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons