Please use this identifier to cite or link to this item: https://doi.org/10.18632/oncotarget.14563
DC FieldValue
dc.titleA novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer
dc.contributor.authorPreca, B.-T
dc.contributor.authorBajdak, K
dc.contributor.authorMock, K
dc.contributor.authorLehmann, W
dc.contributor.authorSundararajan, V
dc.contributor.authorBronsert, P
dc.contributor.authorMatzge-Ogi, A
dc.contributor.authorOrian-Rousseau, V
dc.contributor.authorBrabletz, S
dc.contributor.authorBrabletz, T
dc.contributor.authorMaurer, J
dc.contributor.authorStemmler, M.P
dc.date.accessioned2020-10-26T04:59:11Z
dc.date.available2020-10-26T04:59:11Z
dc.date.issued2017
dc.identifier.citationPreca, B.-T, Bajdak, K, Mock, K, Lehmann, W, Sundararajan, V, Bronsert, P, Matzge-Ogi, A, Orian-Rousseau, V, Brabletz, S, Brabletz, T, Maurer, J, Stemmler, M.P (2017). A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8 (7) : 11530-11543. ScholarBank@NUS Repository. https://doi.org/10.18632/oncotarget.14563
dc.identifier.issn19492553
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179888
dc.description.abstractCancer metastasis is the main reason for poor patient survival. Tumor cells delaminate from the primary tumor by induction of epithelial-mesenchymal transition (EMT). EMT is mediated by key transcription factors, including ZEB1, activated by tumor cell interactions with stromal cells and the extracellular matrix (ECM). ZEB1- mediated EMT and motility is accompanied by substantial cell reprogramming and the acquisition of a stemness phenotype. However, understanding of the underlying mechanism is still incomplete. We identified hyaluronic acid (HA), one major ECM proteoglycan and enriched in mammary tumors, to support EMT and enhance ZEB1 expression in cooperation with CD44s. In breast cancer cell lines HA is synthesized mainly by HAS2, which was already shown to be implicated in cancer progression. ZEB1 and HAS2 expression strongly correlates in various cancer entities and high HAS2 levels associate with an early relapse. We identified HAS2, tumor cell-derived HA and ZEB1 to form a positive feedback loop as ZEB1, elevated by HA, directly activates HAS2 expression. In an in vitro differentiation model HA-conditioned medium of breast cancer cells is enhancing osteoclast formation, an indicator of tumor cell-induced osteolysis that facilitates formation of bone metastasis. In combination with the previously identified ZEB1/ESRP1/CD44s feedback loop, we found a novel autocrine mechanism how ZEB1 is accelerating EMT.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectepithelial splicing regulatory protein 1
dc.subjectHermes antigen
dc.subjecthyaluronic acid
dc.subjecthyaluronic acid synthase 2
dc.subjectproteoglycan
dc.subjectregulator protein
dc.subjectsynthetase
dc.subjecttranscription factor ZEB1
dc.subjecttransforming growth factor beta
dc.subjectunclassified drug
dc.subjectglucuronosyltransferase
dc.subjectHAS2 protein, human
dc.subjecttranscription factor ZEB1
dc.subjectZEB1 protein, human
dc.subjectArticle
dc.subjectbone metastasis
dc.subjectbreast cancer
dc.subjectbreast cancer cell line
dc.subjectcancer growth
dc.subjectcancer prognosis
dc.subjectcancer recurrence
dc.subjectcell differentiation
dc.subjectcontrolled study
dc.subjectcorrelational study
dc.subjectepithelial mesenchymal transition
dc.subjectfeedback system
dc.subjectgene
dc.subjectgene activation
dc.subjectgene expression
dc.subjectgenetic association
dc.subjectHAS2 gene
dc.subjecthuman
dc.subjecthuman cell
dc.subjecthuman tissue
dc.subjectin vitro study
dc.subjectosteoclast
dc.subjectosteolysis
dc.subjectpositive feedback loop
dc.subjectprotein function
dc.subjecttumor growth
dc.subjectZEB1 gene
dc.subjectbreast tumor
dc.subjectchromatin immunoprecipitation
dc.subjectenzyme linked immunosorbent assay
dc.subjectepithelial mesenchymal transition
dc.subjectfemale
dc.subjectfluorescent antibody technique
dc.subjectgene expression regulation
dc.subjectimmunohistochemistry
dc.subjectKaplan Meier method
dc.subjectmetabolism
dc.subjectpathology
dc.subjectphysiological feedback
dc.subjectphysiology
dc.subjectpolymerase chain reaction
dc.subjecttumor cell line
dc.subjecttumor invasion
dc.subjectWestern blotting
dc.subjectBlotting, Western
dc.subjectBreast Neoplasms
dc.subjectCell Differentiation
dc.subjectCell Line, Tumor
dc.subjectChromatin Immunoprecipitation
dc.subjectEnzyme-Linked Immunosorbent Assay
dc.subjectEpithelial-Mesenchymal Transition
dc.subjectFeedback, Physiological
dc.subjectFemale
dc.subjectFluorescent Antibody Technique
dc.subjectGene Expression Regulation, Neoplastic
dc.subjectGlucuronosyltransferase
dc.subjectHumans
dc.subjectImmunohistochemistry
dc.subjectKaplan-Meier Estimate
dc.subjectNeoplasm Invasiveness
dc.subjectOsteoclasts
dc.subjectPolymerase Chain Reaction
dc.subjectZinc Finger E-box-Binding Homeobox 1
dc.typeArticle
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.description.doi10.18632/oncotarget.14563
dc.description.sourcetitleOncotarget
dc.description.volume8
dc.description.issue7
dc.description.page11530-11543
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_18632_oncotarget_14563.pdf14.4 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons