Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms15570
DC FieldValue
dc.titleMesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
dc.contributor.authorWu, J
dc.contributor.authorHuang, S.-W
dc.contributor.authorHuang, Y
dc.contributor.authorZhou, H
dc.contributor.authorYang, J
dc.contributor.authorLiu, J.-M
dc.contributor.authorYu, M
dc.contributor.authorLo, G
dc.contributor.authorKwong, D.-L
dc.contributor.authorDuan, S
dc.contributor.authorWei Wong, C
dc.date.accessioned2020-10-26T02:45:34Z
dc.date.available2020-10-26T02:45:34Z
dc.date.issued2017
dc.identifier.citationWu, J, Huang, S.-W, Huang, Y, Zhou, H, Yang, J, Liu, J.-M, Yu, M, Lo, G, Kwong, D.-L, Duan, S, Wei Wong, C (2017). Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators. Nature communications 8 : 15570. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms15570
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179711
dc.description.abstractChaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60?fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale.
dc.publisherNLM (Medline)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/ncomms15570
dc.description.sourcetitleNature communications
dc.description.volume8
dc.description.page15570
dc.published.statepublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms15570.pdf1.31 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons