Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/18/7/073004
DC FieldValue
dc.titleEntropic uncertainty and measurement reversibility
dc.contributor.authorBerta, M
dc.contributor.authorWehner, S
dc.contributor.authorWilde, M.M
dc.date.accessioned2020-10-23T02:46:43Z
dc.date.available2020-10-23T02:46:43Z
dc.date.issued2016
dc.identifier.citationBerta, M, Wehner, S, Wilde, M.M (2016). Entropic uncertainty and measurement reversibility. New Journal of Physics 18 (7) : 73004. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/18/7/073004
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179298
dc.description.abstractThe entropic uncertainty relation with quantum side information (EUR-QSI) from (Berta et al 2010 Nat. Phys. 6 659) is a unifying principle relating two distinctive features of quantum mechanics: quantum uncertainty due to measurement incompatibility, and entanglement. In these relations, quantum uncertainty takes the form of preparation uncertainty where one of two incompatible measurements is applied. In particular, the 'uncertainty witness' lower bound in the EUR-QSI is not a function of a post-measurement state. An insightful proof of the EUR-QSI from (Coles et al 2012 Phys. Rev. Lett. 108 210405) makes use of a fundamental mathematical consequence of the postulates of quantum mechanics known as the non-increase of quantum relative entropy under quantum channels. Here, we exploit this perspective to establish a tightening of the EUR-QSI which adds a new state-dependent term in the lower bound, related to how well one can reverse the action of a quantum measurement. As such, this new term is a direct function of the post-measurement state and can be thought of as quantifying how much disturbance a given measurement causes. Our result thus quantitatively unifies this feature of quantum mechanics with the others mentioned above. We have experimentally tested our theoretical predictions on the IBM quantum experience and find reasonable agreement between our predictions and experimental outcomes. © 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectEntropy
dc.subjectForecasting
dc.subjectMechanics
dc.subjectQuantum entanglement
dc.subjectUncertainty analysis
dc.subjectDirect functions
dc.subjectPost-measurement
dc.subjectQuantum measurement
dc.subjectQuantum relative entropies
dc.subjectSide information
dc.subjectState-dependent
dc.subjectUncertainty principles
dc.subjectUncertainty relation
dc.subjectQuantum theory
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1088/1367-2630/18/7/073004
dc.description.sourcetitleNew Journal of Physics
dc.description.volume18
dc.description.issue7
dc.description.page73004
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_18_7_073004.pdf1.87 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons