Please use this identifier to cite or link to this item: https://doi.org/10.1074/jbc.M117.794743
DC FieldValue
dc.titleCavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis
dc.contributor.authorBoopathy, G.T.K
dc.contributor.authorKulkarni, M
dc.contributor.authorHo, S.Y
dc.contributor.authorBoey, A
dc.contributor.authorChua, E.W.M
dc.contributor.authorBarathi, V.A
dc.contributor.authorCarney, T.J
dc.contributor.authorWang, X
dc.contributor.authorHong, W
dc.date.accessioned2020-10-23T02:37:57Z
dc.date.available2020-10-23T02:37:57Z
dc.date.issued2017
dc.identifier.citationBoopathy, G.T.K, Kulkarni, M, Ho, S.Y, Boey, A, Chua, E.W.M, Barathi, V.A, Carney, T.J, Wang, X, Hong, W (2017). Cavin-2 regulates the activity and stability of endothelial nitric-oxide synthase (eNOS) in angiogenesis. Journal of Biological Chemistry 292 (43) : 17760-17776. ScholarBank@NUS Repository. https://doi.org/10.1074/jbc.M117.794743
dc.identifier.issn0021-9258
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179254
dc.description.abstractAngiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dys-regulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric-oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
dc.publisherAmerican Society for Biochemistry and Molecular Biology Inc.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectBiosynthesis
dc.subjectBlood vessels
dc.subjectCell membranes
dc.subjectCell proliferation
dc.subjectCells
dc.subjectCytology
dc.subjectDiseases
dc.subjectGenes
dc.subjectMass spectrometry
dc.subjectNitric oxide
dc.subjectAge-related macular degeneration
dc.subjectBinding proteins
dc.subjectElectron microscopy analysis
dc.subjectEndothelial nitric-oxide synthase (eNOS)
dc.subjectOxygen induced retinopathies
dc.subjectPhosphatidylserine
dc.subjectTherapeutic strategy
dc.subjectVessel formation
dc.subjectEndothelial cells
dc.subjectalpha5 integrin
dc.subjectangiopoietin 2
dc.subjectbeta3 integrin
dc.subjectbinding protein
dc.subjectcaveolin 1
dc.subjectcavin 2
dc.subjectCD31 antigen
dc.subjectcell protein
dc.subjectcollagen type 1
dc.subjectdectin 1
dc.subjectendoglin
dc.subjectendothelial nitric oxide synthase
dc.subjectephrin receptor B4
dc.subjectfibroblast growth factor 2
dc.subjectgelatinase A
dc.subjectinterleukin 7 receptor
dc.subjectmembrane protein
dc.subjectmessenger RNA
dc.subjectmicrosomal aminopeptidase
dc.subjectneuropilin 1
dc.subjectneuropilin 2
dc.subjectphosphatidylserine
dc.subjectprostaglandin G
dc.subjectprotein kinase B
dc.subjecttransforming growth factor beta
dc.subjecttransforming growth factor beta2
dc.subjecttyrosine kinase receptor
dc.subjectunclassified drug
dc.subjecturokinase
dc.subjectvascular endothelial cadherin
dc.subjectcavin-2 protein, mouse
dc.subjectendothelial nitric oxide synthase
dc.subjectmembrane protein
dc.subjectnitric oxide
dc.subjectNos3 protein, mouse
dc.subjectzebrafish protein
dc.subjectangiogenesis
dc.subjectanimal experiment
dc.subjectArticle
dc.subjectcaveola
dc.subjectcell invasion
dc.subjectcell migration
dc.subjectcell proliferation
dc.subjectCLEC14A gene
dc.subjectcontrolled study
dc.subjectelectron microscopy
dc.subjectembryo
dc.subjectendothelial microparticle
dc.subjectenzyme activity
dc.subjectenzyme regulation
dc.subjectenzyme stability
dc.subjectexosome
dc.subjectflow cytometry
dc.subjectgene
dc.subjectgene expression
dc.subjectgene identification
dc.subjectgenetic screening
dc.subjecthuman
dc.subjecthuman cell
dc.subjectIL7R gene
dc.subjectimmunofluorescence
dc.subjectimmunogold labeling
dc.subjectimmunoprecipitation
dc.subjectmass spectrometry
dc.subjectmicroinjection
dc.subjectnonhuman
dc.subjectphenotype
dc.subjectpriority journal
dc.subjectproliferative diabetic retinopathy
dc.subjectpromoter region
dc.subjectprotein analysis
dc.subjectprotein expression
dc.subjectprotein function
dc.subjectprotein localization
dc.subjectprotein secretion
dc.subjectquantitative analysis
dc.subjectreal time polymerase chain reaction
dc.subjectretina development
dc.subjectretrolental fibroplasia
dc.subjectRNA splicing
dc.subjectRYK gene
dc.subjectSDPR gene
dc.subjectsignal transduction
dc.subjectTINAGL1 gene
dc.subjectTMEM43 gene
dc.subjectTMEM59 gene
dc.subjectWestern blotting
dc.subjectzebra fish
dc.subjectanimal
dc.subjectdisease model
dc.subjectenzyme stability
dc.subjectgenetics
dc.subjectmetabolism
dc.subjectmouse
dc.subjectpathology
dc.subjectretina neovascularization
dc.subjectAnimals
dc.subjectDisease Models, Animal
dc.subjectEnzyme Stability
dc.subjectMembrane Proteins
dc.subjectMice
dc.subjectNitric Oxide
dc.subjectNitric Oxide Synthase Type III
dc.subjectRetinal Neovascularization
dc.subjectRetinopathy of Prematurity
dc.subjectZebrafish
dc.subjectZebrafish Proteins
dc.typeArticle
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.contributor.departmentOPHTHALMOLOGY
dc.contributor.departmentINSTITUTE OF MOLECULAR & CELL BIOLOGY
dc.description.doi10.1074/jbc.M117.794743
dc.description.sourcetitleJournal of Biological Chemistry
dc.description.volume292
dc.description.issue43
dc.description.page17760-17776
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1074_jbc_M117_794743.pdf9.25 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons