Please use this identifier to cite or link to this item: https://doi.org/10.1155/2017/5361246
DC FieldValue
dc.titleAdaptive neural network control of serial variable stiffness actuators
dc.contributor.authorGuo, Z
dc.contributor.authorPan, Y
dc.contributor.authorSun, T
dc.contributor.authorZhang, Y
dc.contributor.authorXiao, X
dc.date.accessioned2020-10-23T02:37:34Z
dc.date.available2020-10-23T02:37:34Z
dc.date.issued2017
dc.identifier.citationGuo, Z, Pan, Y, Sun, T, Zhang, Y, Xiao, X (2017). Adaptive neural network control of serial variable stiffness actuators. Complexity 2017 : 5361246. ScholarBank@NUS Repository. https://doi.org/10.1155/2017/5361246
dc.identifier.issn1076-2787
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179252
dc.description.abstractThis paper focuses on modeling and control of a class of serial variable stiffness actuators (SVSAs) based on level mechanisms for robotic applications. A multi-input multi-output complex nonlinear dynamic model is derived to fully describe SVSAs and the relative degree of the model is determined accordingly. Due to nonlinearity, high coupling, and parametric uncertainty of SVSAs, a neural network-based adaptive control strategy based on feedback linearization is proposed to handle system uncertainties. The feasibility of the proposed approach for position and stiffness tracking of SVSAs is verified by simulation results. © 2017 Zhao Guo et al.
dc.publisherHindawi Limited
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.typeArticle
dc.contributor.departmentBIOMEDICAL ENGINEERING
dc.description.doi10.1155/2017/5361246
dc.description.sourcetitleComplexity
dc.description.volume2017
dc.description.page5361246
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1155_2017_5361246.pdf4 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons