Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00204-018-2213-0
DC FieldValue
dc.titleBuilding predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence
dc.contributor.authorLee, J.-Y.J
dc.contributor.authorMiller, J.A
dc.contributor.authorBasu, S
dc.contributor.authorKee, T.-Z.V
dc.contributor.authorLoo, L.-H
dc.date.accessioned2020-10-22T07:24:25Z
dc.date.available2020-10-22T07:24:25Z
dc.date.issued2018
dc.identifier.citationLee, J.-Y.J, Miller, J.A, Basu, S, Kee, T.-Z.V, Loo, L.-H (2018). Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence. Archives of Toxicology 92 (6) : 2055-2075. ScholarBank@NUS Repository. https://doi.org/10.1007/s00204-018-2213-0
dc.identifier.issn03405761
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/179035
dc.description.abstractHuman lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called “High-throughput In vitro Phenotypic Profiling for Toxicity Prediction” (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities. © 2018, The Author(s).
dc.publisherSpringer Verlag
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectamiodarone
dc.subjectaristolochic acid
dc.subjectbleomycin
dc.subjectbutylcresol
dc.subjectcadmium chloride
dc.subjectcarbamazepine
dc.subjectDNA
dc.subjectdoxorubicin
dc.subjectlithium chloride
dc.subjectmyrcene
dc.subjectnitrofurantoin
dc.subjectnystatin
dc.subjectochratoxin
dc.subjectparaquat
dc.subjectpatulin
dc.subjectphalloidin
dc.subjectphenylenediamine
dc.subjectskatole
dc.subjecttenofovir
dc.subjectxenobiotic agent
dc.subjectArticle
dc.subjectartificial intelligence
dc.subjectautomation
dc.subjectBEAS-2B cell line
dc.subjectcell viability assay
dc.subjectchemical structure
dc.subjectcontrolled study
dc.subjectdiagnostic accuracy
dc.subjectdiagnostic test accuracy study
dc.subjectDNA damage response
dc.subjectDNA strand breakage
dc.subjectHBEC cell line (bronchial epithelium)
dc.subjecthigh throughput in vitro phenotypic profiling for toxicity prediction
dc.subjecthigh throughput screening
dc.subjecthuman
dc.subjecthuman cell
dc.subjectin vitro study
dc.subjectin vivo study
dc.subjectlung cell line
dc.subjectlung toxicity
dc.subjectphenotype
dc.subjectpredictive value
dc.subjectpriority journal
dc.subjectsensitivity and specificity
dc.subjectA-549 cell line
dc.subjectbronchus
dc.subjectcell line
dc.subjectcell survival
dc.subjectchemistry
dc.subjectdrug effect
dc.subjecthigh throughput screening
dc.subjectlung
dc.subjectpathology
dc.subjectprocedures
dc.subjecttoxicity testing
dc.subjectA549 Cells
dc.subjectArtificial Intelligence
dc.subjectBronchi
dc.subjectCell Line
dc.subjectCell Survival
dc.subjectHigh-Throughput Screening Assays
dc.subjectHumans
dc.subjectLung
dc.subjectPredictive Value of Tests
dc.subjectSensitivity and Specificity
dc.subjectToxicity Tests
dc.subjectXenobiotics
dc.typeArticle
dc.contributor.departmentPHARMACOLOGY
dc.description.doi10.1007/s00204-018-2213-0
dc.description.sourcetitleArchives of Toxicology
dc.description.volume92
dc.description.issue6
dc.description.page2055-2075
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1007_s00204-018-2213-0.pdf9.77 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons