Please use this identifier to cite or link to this item: https://doi.org/10.1039/c5tb02172c
DC FieldValue
dc.titleBiodistribution and fate of core-labeled 125I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP)
dc.contributor.authorTang, C
dc.contributor.authorEdelstein, J
dc.contributor.authorMikitsh, J.L
dc.contributor.authorXiao, E
dc.contributor.authorHemphill, A.H
dc.contributor.authorPagels, R
dc.contributor.authorChacko, A.-M
dc.contributor.authorPrud'homme, R
dc.date.accessioned2020-10-22T03:02:40Z
dc.date.available2020-10-22T03:02:40Z
dc.date.issued2016
dc.identifier.citationTang, C, Edelstein, J, Mikitsh, J.L, Xiao, E, Hemphill, A.H, Pagels, R, Chacko, A.-M, Prud'homme, R (2016). Biodistribution and fate of core-labeled 125I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). Journal of Materials Chemistry B 4 (14) : 2428-2434. ScholarBank@NUS Repository. https://doi.org/10.1039/c5tb02172c
dc.identifier.issn20507518
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178924
dc.description.abstractNon-invasive medical imaging techniques based on radionuclide imaging are powerful platforms to track the fate of radiolabeled materials for diagnostic or drug delivery applications. Polymer-based nanocarriers tagged with non-standard radionuclides with relatively long half-lives (e.g.64Cu: t1/2 = 12.7 h, 76Br: t1/2 = 16.2 h, 89Zr: t1/2 = 3.3 d, 124I: t1/2 = 4.2 d) may greatly expand applications of nanomedicines in molecular imaging and therapy. However, radiolabeling strategies that ensure stable in vivo association of the radiolabel with the nanocarrier remain a significant challenge. In this study, we covalently attach radioiodine to the core of pre-fabricated nanocarriers. First, we encapsulated polyvinyl phenol within a poly(ethylene glycol) coating using Flash NanoPrecipitation (FNP) to produce stable 75 nm and 120 nm nanocarriers. Following FNP, we radiolabeled the encapsulated polyvinyl phenol with 125I via electrophilic aromatic substitution in high radiochemical yields (>90%). Biodistribution studies reveal low radioactivity in the thyroid, indicating minimal leaching of the radiolabel in vivo. Further, PEGylated [125I]PVPh nanocarriers exhibited relatively long circulation half-lives (t1/2? = 2.9 h, t1/2? = 34.9 h) and gradual reticuloendothelial clearance, with 31% of injected dose in blood retained at 24 h post-injection. © The Royal Society of Chemistry 2016.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectDiagnosis
dc.subjectImaging techniques
dc.subjectMolecular imaging
dc.subjectPhenols
dc.subjectPolyethylene glycols
dc.subjectPolymers
dc.subjectRadioactive tracers
dc.subjectRadioisotopes
dc.subjectDrug delivery applications
dc.subjectElectrophilic aromatic substitutions
dc.subjectLong circulations
dc.subjectLow-radioactivity
dc.subjectNano precipitations
dc.subjectPolymeric nanocarriers
dc.subjectRadiochemical yield
dc.subjectRadionuclide imaging
dc.subjectMedical imaging
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1039/c5tb02172c
dc.description.sourcetitleJournal of Materials Chemistry B
dc.description.volume4
dc.description.issue14
dc.description.page2428-2434
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1039_c5tb02172c.pdf1.86 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons