Please use this identifier to cite or link to this item: https://doi.org/10.1038/srep24791
DC FieldValue
dc.titleA comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser
dc.contributor.authorYoon, C.H
dc.contributor.authorYurkov, M.V
dc.contributor.authorSchneidmiller, E.A
dc.contributor.authorSamoylova, L
dc.contributor.authorBuzmakov, A
dc.contributor.authorJurek, Z
dc.contributor.authorZiaja, B
dc.contributor.authorSantra, R
dc.contributor.authorLoh, N.D
dc.contributor.authorTschentscher, T
dc.contributor.authorMancuso, A.P
dc.date.accessioned2020-10-22T03:00:30Z
dc.date.available2020-10-22T03:00:30Z
dc.date.issued2016
dc.identifier.citationYoon, C.H, Yurkov, M.V, Schneidmiller, E.A, Samoylova, L, Buzmakov, A, Jurek, Z, Ziaja, B, Santra, R, Loh, N.D, Tschentscher, T, Mancuso, A.P (2016). A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser. Scientific Reports 6 : 24791. ScholarBank@NUS Repository. https://doi.org/10.1038/srep24791
dc.identifier.issn20452322
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178915
dc.description.abstractThe advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design. © 2016, Nature Publishing Group. All rights reserved.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectnitrogenase reductase
dc.subjectoxidoreductase
dc.subjectchemistry
dc.subjectcomputer simulation
dc.subjectdevices
dc.subjectelectron
dc.subjectlaser
dc.subjectphoton
dc.subjectprocedures
dc.subjectprotein conformation
dc.subjecttheoretical model
dc.subjectthree dimensional imaging
dc.subjectX ray crystallography
dc.subjectX ray diffraction
dc.subjectComputer Simulation
dc.subjectCrystallography, X-Ray
dc.subjectElectrons
dc.subjectImaging, Three-Dimensional
dc.subjectLasers
dc.subjectModels, Theoretical
dc.subjectOxidoreductases
dc.subjectPhotons
dc.subjectProtein Conformation
dc.subjectX-Ray Diffraction
dc.typeArticle
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1038/srep24791
dc.description.sourcetitleScientific Reports
dc.description.volume6
dc.description.page24791
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_srep24791.pdf4.26 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons