Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-00312-1
DC FieldValue
dc.titleSerial processing of kinematic signals by cerebellar circuitry during voluntary whisking
dc.contributor.authorChen, S
dc.contributor.authorAugustine, G.J
dc.contributor.authorChadderton, P
dc.date.accessioned2020-10-20T10:27:56Z
dc.date.available2020-10-20T10:27:56Z
dc.date.issued2017
dc.identifier.citationChen, S, Augustine, G.J, Chadderton, P (2017). Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nature Communications 8 (1) : 312. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-00312-1
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178593
dc.description.abstractPurkinje cells (PCs) in Crus 1 represent whisker movement via linear changes in firing rate, but the circuit mechanisms underlying this coding scheme are unknown. Here we examine the role of upstream inputs to PCs - excitatory granule cells (GCs) and inhibitory molecular layer interneurons - in processing of whisking signals. Patch clamp recordings in GCs reveal that movement is accompanied by changes in mossy fibre input rate that drive membrane potential depolarisation and high-frequency bursting activity at preferred whisker angles. Although individual GCs are narrowly tuned, GC populations provide linear excitatory drive across a wide range of movement. Molecular layer interneurons exhibit bidirectional firing rate changes during whisking, similar to PCs. Together, GC populations provide downstream PCs with linear representations of volitional movement, while inhibitory networks invert these signals. The exquisite sensitivity of neurons at each processing stage enables faithful propagation of kinematic representations through the cerebellum. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectbrain
dc.subjectcells and cell components
dc.subjectinhibitor
dc.subjectkinematics
dc.subjectmolecular analysis
dc.subjectnervous system
dc.subjectanimal behavior
dc.subjectanimal experiment
dc.subjectArticle
dc.subjectcell population
dc.subjectcerebellum
dc.subjectcerebellum cortex
dc.subjectcerebellum molecular layer
dc.subjectcurrent clamp technique
dc.subjectdownstream processing
dc.subjectelectrophysiological procedures
dc.subjectexcitatory postsynaptic potential
dc.subjectfemale
dc.subjectfiring rate
dc.subjectgranule cell
dc.subjectin vivo study
dc.subjectinterneuron
dc.subjectkinematics
dc.subjectmale
dc.subjectmouse
dc.subjectmovement (physiology)
dc.subjectnerve cell membrane steady potential
dc.subjectnerve cell stimulation
dc.subjectneuromodulation
dc.subjectnonhuman
dc.subjectpatch clamp technique
dc.subjectPurkinje cell
dc.subjectsignal processing
dc.subjectsynaptic inhibition
dc.subjecttuning curve
dc.subjectvoltage clamp technique
dc.subjectvoluntary movement
dc.subjectwhisker movement
dc.subjectanimal
dc.subjectC57BL mouse
dc.subjectcell culture
dc.subjectcerebellum
dc.subjectchemistry
dc.subjectcytology
dc.subjectelectrophysiology
dc.subjectnerve cell
dc.subjectphysiology
dc.subjectAnimals
dc.subjectCells, Cultured
dc.subjectCerebellum
dc.subjectElectrophysiology
dc.subjectInterneurons
dc.subjectMice
dc.subjectMice, Inbred C57BL
dc.subjectNeurons
dc.subjectPurkinje Cells
dc.typeArticle
dc.contributor.departmentDUKE-NUS MEDICAL SCHOOL
dc.description.doi10.1038/s41467-017-00312-1
dc.description.sourcetitleNature Communications
dc.description.volume8
dc.description.issue1
dc.description.page312
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-00312-1.pdf4.1 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons