Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-00814-y
DC FieldValue
dc.titleSuperplasticity in a lean Fe-Mn-Al steel
dc.contributor.authorHan, J
dc.contributor.authorKang, S.-H
dc.contributor.authorLee, S.-J
dc.contributor.authorKawasaki, M
dc.contributor.authorLee, H.-J
dc.contributor.authorPonge, D
dc.contributor.authorRaabe, D
dc.contributor.authorLee, Y.-K
dc.date.accessioned2020-10-20T10:22:28Z
dc.date.available2020-10-20T10:22:28Z
dc.date.issued2017
dc.identifier.citationHan, J, Kang, S.-H, Lee, S.-J, Kawasaki, M, Lee, H.-J, Ponge, D, Raabe, D, Lee, Y.-K (2017). Superplasticity in a lean Fe-Mn-Al steel. Nature Communications 8 (1) : 751. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-00814-y
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178572
dc.description.abstractSuperplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectalloy
dc.subjectaluminum
dc.subjectiron
dc.subjectmanganese
dc.subjectstainless steel
dc.subjectalloy
dc.subjectaluminum
dc.subjectductility
dc.subjectgrain boundary
dc.subjectiron
dc.subjectmanganese
dc.subjectmelting
dc.subjectplasticity
dc.subjectsteel
dc.subjectstrain
dc.subjectstrength
dc.subjecttemperature
dc.subjecttensile stress
dc.subjectArticle
dc.subjectcold
dc.subjectdiffraction
dc.subjectenergy dispersive X ray spectroscopy
dc.subjectheat
dc.subjectmelting temperature
dc.subjectparticle size
dc.subjectplasticity
dc.subjectscanning electron microscopy
dc.subjectstress strain relationship
dc.subjectsuperplasticity
dc.subjecttensile strength
dc.typeArticle
dc.contributor.departmentSURGERY
dc.description.doi10.1038/s41467-017-00814-y
dc.description.sourcetitleNature Communications
dc.description.volume8
dc.description.issue1
dc.description.page751
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-00814-y.pdf1.09 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons