Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-01772-1
DC FieldValue
dc.titleHigh magnesium mobility in ternary spinel chalcogenides
dc.contributor.authorCanepa, P
dc.contributor.authorBo, S.-H
dc.contributor.authorSai Gautam, G
dc.contributor.authorKey, B
dc.contributor.authorRichards, W.D
dc.contributor.authorShi, T
dc.contributor.authorTian, Y
dc.contributor.authorWang, Y
dc.contributor.authorLi, J
dc.contributor.authorCeder, G
dc.date.accessioned2020-10-20T10:18:19Z
dc.date.available2020-10-20T10:18:19Z
dc.date.issued2017
dc.identifier.citationCanepa, P, Bo, S.-H, Sai Gautam, G, Key, B, Richards, W.D, Shi, T, Tian, Y, Wang, Y, Li, J, Ceder, G (2017). High magnesium mobility in ternary spinel chalcogenides. Nature Communications 8 (1) : 1759. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-01772-1
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178556
dc.description.abstractMagnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. The development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. Here we demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm-1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door for the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectchalcogen
dc.subjectmagnesium
dc.subjectmagnesium ion
dc.subjectselenide
dc.subjection
dc.subjectmagnesium
dc.subjectmobility
dc.subjectprediction
dc.subjectscandium
dc.subjecttheoretical study
dc.subjectab initio calculation
dc.subjectArticle
dc.subjectconductance
dc.subjectcrystal structure
dc.subjectdensity functional theory
dc.subjectdiffusion
dc.subjectelectrochemical impedance spectroscopy
dc.subjectenthalpy
dc.subjectmolecular dynamics
dc.subjectnuclear magnetic resonance
dc.subjectreaction analysis
dc.subjectroom temperature
dc.subjectsignal noise ratio
dc.subjectsynthesis
dc.subjecttemperature sensitivity
dc.subjectX ray diffraction
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-017-01772-1
dc.description.sourcetitleNature Communications
dc.description.volume8
dc.description.issue1
dc.description.page1759
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-01772-1.pdf1.99 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons