Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-03250-8
DC FieldValue
dc.titlePrecipitation of binary quasicrystals along dislocations
dc.contributor.authorYang, Z
dc.contributor.authorZhang, L
dc.contributor.authorChisholm, M.F
dc.contributor.authorZhou, X
dc.contributor.authorYe, H
dc.contributor.authorPennycook, S.J
dc.date.accessioned2020-10-20T09:55:13Z
dc.date.available2020-10-20T09:55:13Z
dc.date.issued2018
dc.identifier.citationYang, Z, Zhang, L, Chisholm, M.F, Zhou, X, Ye, H, Pennycook, S.J (2018). Precipitation of binary quasicrystals along dislocations. Nature Communications 9 (1) : 809. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-03250-8
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178427
dc.description.abstractDislocations in crystals naturally break the symmetry of the bulk, introducing local atomic configurations with symmetries such as fivefold rings. But dislocations do not usually nucleate aperiodic structure along their length. Here we demonstrate the formation of extended binary quasicrystalline precipitates with Penrose-like random-tiling structures, beginning with chemical ordering within the pentagonal structure at cores of prismatic dislocations in Mg-Zn alloys. Atomic resolution observations indicate that icosahedral chains centered along [0001] pillars of Zn interstitial atoms are formed templated by the fivefold rings at dislocation cores. They subsequently form columns of rhombic and elongated hexagonal tiles parallel to the dislocation lines. Quasicrystalline precipitates are formed by random tiling of these rhombic and hexagonal tiles. Such precipitation may impact dislocation glide and alloy strength. © 2018 The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectalloy
dc.subjectmagnesium
dc.subjectzinc
dc.subjectalloy
dc.subjectcrystal structure
dc.subjectcrystallinity
dc.subjectdislocation
dc.subjectprecipitation (chemistry)
dc.subjectArticle
dc.subjectatom
dc.subjectcompression
dc.subjectcrystallization
dc.subjectenergy dispersive X ray spectroscopy
dc.subjectentropy
dc.subjecthardness
dc.subjectmolecular dynamics
dc.subjectprecipitation
dc.subjectscanning transmission electron microscopy
dc.subjectstrength
dc.typeArticle
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-018-03250-8
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page809
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-03250-8.pdf3 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons