Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-06596-1
DC FieldValue
dc.titleLow threshold and efficient multiple exciton generation in halide perovskite nanocrystals
dc.contributor.authorLi, M
dc.contributor.authorBegum, R
dc.contributor.authorFu, J
dc.contributor.authorXu, Q
dc.contributor.authorKoh, T.M
dc.contributor.authorVeldhuis, S.A
dc.contributor.authorGrätzel, M
dc.contributor.authorMathews, N
dc.contributor.authorMhaisalkar, S
dc.contributor.authorSum, T.C
dc.date.accessioned2020-10-20T09:41:26Z
dc.date.available2020-10-20T09:41:26Z
dc.date.issued2018
dc.identifier.citationLi, M, Begum, R, Fu, J, Xu, Q, Koh, T.M, Veldhuis, S.A, Grätzel, M, Mathews, N, Mhaisalkar, S, Sum, T.C (2018). Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nature Communications 9 (1) : 4197. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-06596-1
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178390
dc.description.abstractMultiple exciton generation (MEG) or carrier multiplication, a process that spawns two or more electron–hole pairs from an absorbed high-energy photon (larger than two times bandgap energy Eg), is a promising way to augment the photocurrent and overcome the Shockley–Queisser limit. Conventional semiconductor nanocrystals, the forerunners, face severe challenges from fast hot-carrier cooling. Perovskite nanocrystals possess an intrinsic phonon bottleneck that prolongs slow hot-carrier cooling, transcending these limitations. Herein, we demonstrate enhanced MEG with 2.25Eg threshold and 75% slope efficiency in intermediate-confined colloidal formamidinium lead iodide nanocrystals, surpassing those in strongly confined lead sulfide or lead selenide incumbents. Efficient MEG occurs via inverse Auger process within 90 fs, afforded by the slow cooling of energetic hot carriers. These nanocrystals circumvent the conundrum over enhanced Coulombic coupling and reduced density of states in strongly confined nanocrystals. These insights may lead to the realization of next generation of solar cells and efficient optoelectronic devices. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1038/s41467-018-06596-1
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page4197
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-06596-1.pdf1.26 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons