Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-06907-6
DC FieldValue
dc.titleDual-gate organic phototransistor with high-gain and linear photoresponse
dc.contributor.authorChow, P.C.Y
dc.contributor.authorMatsuhisa, N
dc.contributor.authorZalar, P
dc.contributor.authorKoizumi, M
dc.contributor.authorYokota, T
dc.contributor.authorSomeya, T
dc.date.accessioned2020-10-20T09:39:51Z
dc.date.available2020-10-20T09:39:51Z
dc.date.issued2018
dc.identifier.citationChow, P.C.Y, Matsuhisa, N, Zalar, P, Koizumi, M, Yokota, T, Someya, T (2018). Dual-gate organic phototransistor with high-gain and linear photoresponse. Nature Communications 9 (1) : 4546. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-06907-6
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178386
dc.description.abstractThe conversion of light into electrical signal in a photodetector is a crucial process for a wide range of technological applications. Here we report a new device concept of dual-gate phototransistor that combines the operation of photodiodes and phototransistors to simultaneously enable high-gain and linear photoresponse without requiring external circuitry. In an oppositely biased, dual-gate transistor based on a solution-processed organic heterojunction layer, we find that the presence of both n- and p-type channels enables both photogenerated electrons and holes to efficiently separate and transport in the same semiconducting layer. This operation enables effective control of trap carrier density that leads to linear photoresponse with high photoconductive gain and a significant reduction of electrical noise. As we demonstrate using a large-area, 8 × 8 imaging array of dual-gate phototransistors, this device concept is promising for high-performance and scalable photodetectors with tunable dynamic range. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectArticle
dc.subjectelectric field
dc.subjectelectric potential
dc.subjectelectron
dc.subjectelectron spin resonance
dc.subjectelectron transport
dc.subjectlight
dc.subjectlight intensity
dc.subjectlight related phenomena
dc.subjectnoise
dc.subjectnoise measurement
dc.subjectphotodynamics
dc.subjectphotolithotroph
dc.subjectphotoresponse
dc.subjectspectroscopy
dc.subjectstatic electricity
dc.subjectsteady state
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1038/s41467-018-06907-6
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page4546
dc.published.statepublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-06907-6.pdf1.01 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons