Please use this identifier to cite or link to this item: https://doi.org/10.7554/eLife.31659
DC FieldValue
dc.titleNeurexin and neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity
dc.contributor.authorConstance, W.D
dc.contributor.authorMukherjee, A
dc.contributor.authorFisher, Y.E
dc.contributor.authorPop, S
dc.contributor.authorBlanc, E
dc.contributor.authorToyama, Y
dc.contributor.authorWilliams, D.W
dc.date.accessioned2020-10-20T08:55:10Z
dc.date.available2020-10-20T08:55:10Z
dc.date.issued2018
dc.identifier.citationConstance, W.D, Mukherjee, A, Fisher, Y.E, Pop, S, Blanc, E, Toyama, Y, Williams, D.W (2018). Neurexin and neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity. eLife 7 : e31659. ScholarBank@NUS Repository. https://doi.org/10.7554/eLife.31659
dc.identifier.issn2050084X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178254
dc.description.abstractBuilding arborisations of the right size and shape is fundamental for neural network function. Live imaging in vertebrate brains strongly suggests that nascent synapses are critical for branch growth during development. The molecular mechanisms underlying this are largely unknown. Here we present a novel system in Drosophila for studying the development of complex arborisations live, in vivo during metamorphosis. In growing arborisations we see branch dynamics and localisations of presynaptic proteins very similar to the ‘synaptotropic growth’ described in fish/frogs. These accumulations of presynaptic proteins do not appear to be presynaptic release sites and are not paired with neurotransmitter receptors. Knockdowns of either evoked or spontaneous neurotransmission do not impact arbor growth. Instead, we find that axonal branch growth is regulated by dynamic, focal localisations of Neurexin and Neuroligin. These adhesion complexes provide stability for filopodia by a ‘stick-and-grow’ based mechanism wholly independent of synaptic activity. © Constance et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectenhanced green fluorescent protein
dc.subjectneurexin
dc.subjectneuroligin
dc.subjectneurotransmitter receptor
dc.subjectDrosophila protein
dc.subjectnerve cell adhesion molecule
dc.subjectneuroligin 1
dc.subjectNrx protein, Drosophila
dc.subjectprotein binding
dc.subjectadult
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectArticle
dc.subjectaxon
dc.subjectcell adhesion
dc.subjectcontrolled study
dc.subjectDrosophila
dc.subjectfemale
dc.subjectgene expression
dc.subjectimmunocytochemistry
dc.subjectimmunohistochemistry
dc.subjectmetamorphosis
dc.subjectnerve cell differentiation
dc.subjectnerve cell growth
dc.subjectnerve cell network
dc.subjectnonhuman
dc.subjectsynapse
dc.subjectanimal
dc.subjectbrain
dc.subjectcell adhesion
dc.subjectembryology
dc.subjectgene knockout
dc.subjectgenetics
dc.subjectmetabolism
dc.subjectmorphogenesis
dc.subjectnerve cell
dc.subjectphysiology
dc.subjectAnimals
dc.subjectBrain
dc.subjectCell Adhesion
dc.subjectCell Adhesion Molecules, Neuronal
dc.subjectDrosophila
dc.subjectDrosophila Proteins
dc.subjectGene Knockout Techniques
dc.subjectMorphogenesis
dc.subjectNeurons
dc.subjectProtein Binding
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.7554/eLife.31659
dc.description.sourcetitleeLife
dc.description.volume7
dc.description.pagee31659
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_7554_eLife_31659.pdf21.54 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons