Please use this identifier to cite or link to this item: https://doi.org/10.1186/s13073-017-0511-4
DC FieldValue
dc.titleLinking FOXO3, NCOA3, and TCF7L2 to Ras pathway phenotypes through a genomewide forward genetic screen in human colorectal cancer cells
dc.contributor.authorKundu, S
dc.contributor.authorAli, M.A
dc.contributor.authorHandin, N
dc.contributor.authorPadhan, N
dc.contributor.authorLarsson, J
dc.contributor.authorKaroutsou, M
dc.contributor.authorBan, K
dc.contributor.authorWisniewski, J.R
dc.contributor.authorArtursson, P
dc.contributor.authorHe, L
dc.contributor.authorHellström, M
dc.contributor.authorSjöblom, T
dc.date.accessioned2020-10-20T05:10:31Z
dc.date.available2020-10-20T05:10:31Z
dc.date.issued2018
dc.identifier.citationKundu, S, Ali, M.A, Handin, N, Padhan, N, Larsson, J, Karoutsou, M, Ban, K, Wisniewski, J.R, Artursson, P, He, L, Hellström, M, Sjöblom, T (2018). Linking FOXO3, NCOA3, and TCF7L2 to Ras pathway phenotypes through a genomewide forward genetic screen in human colorectal cancer cells. Genome Medicine 10 (1) : 2. ScholarBank@NUS Repository. https://doi.org/10.1186/s13073-017-0511-4
dc.identifier.issn1756994X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/178120
dc.description.abstractBackground: The Ras pathway genes KRAS, BRAF, or ERBBs have somatic mutations in ~ 60% of human colorectal carcinomas. At present, it is unknown whether the remaining cases lack mutations activating the Ras pathway or whether they have acquired mutations in genes hitherto unknown to belong to the pathway. Methods: To address the second possibility and extend the compendium of Ras pathway genes, we used genomewide transposon mutagenesis of two human colorectal cancer cell systems deprived of their activating KRAS or BRAF allele to identify genes enabling growth in low glucose, a Ras pathway phenotype, when targeted. Results: Of the 163 recurrently targeted genes in the two different genetic backgrounds, one-third were known cancer genes and one-fifth had links to the EGFR/Ras/MAPK pathway. When compared to cancer genome sequencing datasets, nine genes also mutated in human colorectal cancers were identified. Among these, stable knockdown of FOXO3, NCOA3, and TCF7L2 restored growth in low glucose but reduced MEK/MAPK phosphorylation, reduced anchorage-independent growth, and modulated expressions of GLUT1 and Ras pathway related proteins. Knockdown of NCOA3 and FOXO3 significantly decreased the sensitivity to cetuximab of KRAS mutant but not wild-type cells. Conclusions: This work establishes a proof-of-concept that human cell-based genome-wide forward genetic screens can assign genes to pathways with clinical importance in human colorectal cancer. © The Author(s). 2018.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20201031
dc.subjectcetuximab
dc.subjectepidermal growth factor receptor
dc.subjectglucose
dc.subjectglucose transporter 1
dc.subjectmitogen activated protein kinase
dc.subjectmitogen activated protein kinase kinase
dc.subjectRas protein
dc.subjecttranscription factor 7 like 2
dc.subjecttranscription factor FKHRL1
dc.subjectcetuximab
dc.subjectFOXO3 protein, human
dc.subjectglucose transporter 1
dc.subjectmitogen activated protein kinase
dc.subjectNCOA3 protein, human
dc.subjectRas protein
dc.subjectSLC2A1 protein, human
dc.subjectsmall interfering RNA
dc.subjectsteroid receptor coactivator 3
dc.subjectTCF7L2 protein, human
dc.subjecttranscription factor 7 like 2
dc.subjecttranscription factor FKHRL1
dc.subjectanchorage independent growth
dc.subjectArticle
dc.subjectcancer growth
dc.subjectcolorectal cancer cell line
dc.subjectcontrolled study
dc.subjectdrug sensitivity
dc.subjectenzyme phosphorylation
dc.subjectFOXO3 gene
dc.subjectgene
dc.subjectgene expression
dc.subjectgene knockdown
dc.subjectgene sequence
dc.subjectgenetic screening
dc.subjectGLUT1 gene
dc.subjectmutagenesis
dc.subjectNCOA3 gene
dc.subjectoncogene K ras
dc.subjectphenotype
dc.subjectpriority journal
dc.subjectTCF7L2 gene
dc.subjecttransposon
dc.subjectwild type
dc.subjectcell proliferation
dc.subjectcolorectal tumor
dc.subjectdrug effect
dc.subjectdrug resistance
dc.subjectgene expression regulation
dc.subjectgenetic screening
dc.subjectgenetics
dc.subjecthuman
dc.subjecthuman genome
dc.subjectmetabolism
dc.subjectpathology
dc.subjectphenotype
dc.subjectphosphorylation
dc.subjectproteomics
dc.subjectsignal transduction
dc.subjecttumor cell line
dc.subjectCell Line, Tumor
dc.subjectCell Proliferation
dc.subjectCetuximab
dc.subjectColorectal Neoplasms
dc.subjectDNA Transposable Elements
dc.subjectDrug Resistance, Neoplasm
dc.subjectExtracellular Signal-Regulated MAP Kinases
dc.subjectForkhead Box Protein O3
dc.subjectGene Expression Regulation, Neoplastic
dc.subjectGene Knockdown Techniques
dc.subjectGenetic Testing
dc.subjectGenome, Human
dc.subjectGlucose Transporter Type 1
dc.subjectHumans
dc.subjectNuclear Receptor Coactivator 3
dc.subjectPhenotype
dc.subjectPhosphorylation
dc.subjectProteomics
dc.subjectras Proteins
dc.subjectRNA, Small Interfering
dc.subjectSignal Transduction
dc.subjectTranscription Factor 7-Like 2 Protein
dc.typeArticle
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.1186/s13073-017-0511-4
dc.description.sourcetitleGenome Medicine
dc.description.volume10
dc.description.issue1
dc.description.page2
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_s13073-017-0511-4.pdf840.49 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons