Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.ic.2017.05.002
DC FieldValue
dc.titleAutomatic learning from positive data and negative counterexamples
dc.contributor.authorJain S.
dc.contributor.authorKinber E.
dc.contributor.authorStephan F.
dc.date.accessioned2020-10-15T07:42:28Z
dc.date.available2020-10-15T07:42:28Z
dc.date.issued2017
dc.identifier.citationJain S., Kinber E., Stephan F. (2017). Automatic learning from positive data and negative counterexamples. Information and Computation 255 : 45-67. ScholarBank@NUS Repository. https://doi.org/10.1016/j.ic.2017.05.002
dc.identifier.issn0890-5401
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/177528
dc.description.abstractWe introduce and study a model for learning in the limit by finite automata from positive data and negative counterexamples. The focus is on learning classes of languages with the membership problem computable by finite automata (so-called automatic classes). We show that, within the framework of our model, finite automata (automatic learners) can learn all automatic classes when memory of a learner is restricted by the size of the longest datum seen so far. We also study capabilities of automatic learners in our model with other restrictions on the memory and how the choice of negative counterexamples (arbitrary, or least, or the ones which are bounded by the largest positive datum seen so far) can impact automatic learnability. © 2017 Elsevier Inc.
dc.publisherElsevier Inc.
dc.subjectAutomatic classes
dc.subjectAutomatic learning
dc.subjectInductive inference
dc.subjectIterative learning
dc.subjectNegative counterexamples
dc.typeArticle
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.ic.2017.05.002
dc.description.sourcetitleInformation and Computation
dc.description.volume255
dc.description.page45-67
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
automaticlearningpositivedata.pdf294.16 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.