Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.5012559
DC FieldValue
dc.titleStrain relaxation of germanium-tin (GeSn) fins
dc.contributor.authorKang, Y
dc.contributor.authorHuang, Y.-C
dc.contributor.authorLee, K.H
dc.contributor.authorBao, S
dc.contributor.authorWang, W
dc.contributor.authorLei, D
dc.contributor.authorMasudy-Panah, S
dc.contributor.authorDong, Y
dc.contributor.authorWu, Y
dc.contributor.authorXu, S
dc.contributor.authorTan, C.S
dc.contributor.authorGong, X
dc.contributor.authorYeo, Y.-C
dc.date.accessioned2020-09-14T07:55:17Z
dc.date.available2020-09-14T07:55:17Z
dc.date.issued2018
dc.identifier.citationKang, Y, Huang, Y.-C, Lee, K.H, Bao, S, Wang, W, Lei, D, Masudy-Panah, S, Dong, Y, Wu, Y, Xu, S, Tan, C.S, Gong, X, Yeo, Y.-C (2018). Strain relaxation of germanium-tin (GeSn) fins. AIP Advances 8 (2) : 25111. ScholarBank@NUS Repository. https://doi.org/10.1063/1.5012559
dc.identifier.issn2158-3226
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/176058
dc.description.abstractStrain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results. © 2018 Author(s).
dc.sourceUnpaywall 20200831
dc.subjectElectron beam lithography
dc.subjectFinite element method
dc.subjectFins (heat exchange)
dc.subjectRaman spectroscopy
dc.subjectStrain relaxation
dc.subjectWafer bonding
dc.subjectDirect wafer bonding
dc.subjectFin structures
dc.subjectFinite element simulations
dc.subjectGermanium tins
dc.subjectMicro Raman Spectroscopy
dc.subjectRaman measurements
dc.subjectStrain components
dc.subjectTransverse strain
dc.subjectTin alloys
dc.typeArticle
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.description.doi10.1063/1.5012559
dc.description.sourcetitleAIP Advances
dc.description.volume8
dc.description.issue2
dc.description.page25111
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1063_1_5012559.pdf8.76 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.