Please use this identifier to cite or link to this item: https://doi.org/10.18632/oncotarget.6464
DC FieldValue
dc.titleGenomic landscape of liposarcoma
dc.contributor.authorKanojia, D
dc.contributor.authorNagata, Y
dc.contributor.authorGarg, M
dc.contributor.authorLee, D.H
dc.contributor.authorSato, A
dc.contributor.authorYoshida, K
dc.contributor.authorSato, Y
dc.contributor.authorSanada, M
dc.contributor.authorMayakonda, A
dc.contributor.authorBartenhagen, C
dc.contributor.authorKlein, H.-U
dc.contributor.authorDoan, N.B
dc.contributor.authorSaid, J.W
dc.contributor.authorMohith, S
dc.contributor.authorGunasekar, S
dc.contributor.authorShiraishi, Y
dc.contributor.authorChiba, K
dc.contributor.authorTanaka, H
dc.contributor.authorMiyano, S
dc.contributor.authorMyklebost, O
dc.contributor.authorYang, H
dc.contributor.authorDugas, M
dc.contributor.authorMeza-Zepeda, L.A
dc.contributor.authorSilberman, A.W
dc.contributor.authorForscher, C
dc.contributor.authorTyner, J.W
dc.contributor.authorOgawa, S
dc.contributor.authorPhillip Koeffler, H
dc.date.accessioned2020-09-10T02:00:33Z
dc.date.available2020-09-10T02:00:33Z
dc.date.issued2015
dc.identifier.citationKanojia, D, Nagata, Y, Garg, M, Lee, D.H, Sato, A, Yoshida, K, Sato, Y, Sanada, M, Mayakonda, A, Bartenhagen, C, Klein, H.-U, Doan, N.B, Said, J.W, Mohith, S, Gunasekar, S, Shiraishi, Y, Chiba, K, Tanaka, H, Miyano, S, Myklebost, O, Yang, H, Dugas, M, Meza-Zepeda, L.A, Silberman, A.W, Forscher, C, Tyner, J.W, Ogawa, S, Phillip Koeffler, H (2015). Genomic landscape of liposarcoma. Oncotarget 6 (40) : 42429-42444. ScholarBank@NUS Repository. https://doi.org/10.18632/oncotarget.6464
dc.identifier.issn19492553
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175523
dc.description.abstractLiposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.
dc.publisherImpact Journals LLC
dc.sourceUnpaywall 20200831
dc.subjectATM protein
dc.subjectcarboxypeptidase
dc.subjectcarboxypeptidase M
dc.subjectcheckpoint kinase 1
dc.subjectcheckpoint kinase 2
dc.subjectcyclin dependent kinase 4
dc.subjectDNA
dc.subjectepidermal growth factor receptor
dc.subjectepidermal growth factor receptor 3
dc.subjectgenomic DNA
dc.subjecthigh mobility group A2 protein
dc.subjectJanus kinase
dc.subjectlaminin alpha4
dc.subjectmicroRNA 15a
dc.subjectmicroRNA 16
dc.subjectmitogen activated protein kinase
dc.subjectneurofibromin
dc.subjectprotein MDM2
dc.subjectprotein p53
dc.subjectsomatomedin B
dc.subjectsomatomedin C receptor
dc.subjectSTAT protein
dc.subjecttranscription factor RUNX3
dc.subjectunclassified drug
dc.subjectWnt protein
dc.subjecttranscriptome
dc.subjectapoptosis
dc.subjectARID1A gene
dc.subjectArticle
dc.subjectATM gene
dc.subjectcancer genetics
dc.subjectcarcinogenesis
dc.subjectCDK4 gene
dc.subjectCHEK1 gene
dc.subjectCHEK2 gene
dc.subjectchromosome 11q
dc.subjectchromosome 13q
dc.subjectchromosome 1p
dc.subjectcontrolled study
dc.subjectcopy number variation
dc.subjectCPM gene
dc.subjectDNA damage
dc.subjectdrug research
dc.subjectERBB3 gene
dc.subjectFAT3 gene
dc.subjectgene
dc.subjectgene amplification
dc.subjectgene deletion
dc.subjectgene mutation
dc.subjectgenetic heterogeneity
dc.subjectgenetic procedures
dc.subjectgenome analysis
dc.subjectHMGA2 gene
dc.subjecthuman
dc.subjecthuman cell
dc.subjecthuman tissue
dc.subjectIGF1R gene
dc.subjectIGF2 gene
dc.subjectin vitro study
dc.subjectin vivo study
dc.subjectLAMA4 gene
dc.subjectliposarcoma
dc.subjectmajor clinical study
dc.subjectMDC1 gene
dc.subjectMDM2 gene
dc.subjectMIR15A gene
dc.subjectMIR16 1 gene
dc.subjectMIR557 gene
dc.subjectmolecularly targeted therapy
dc.subjectMXRA5 gene
dc.subjectNF1 gene
dc.subjectoncogene
dc.subjectPLEC gene
dc.subjectpolymerase chain reaction
dc.subjectRUNX3 gene
dc.subjectsignal transduction
dc.subjectsingle nucleotide polymorphism
dc.subjectsomatic mutation
dc.subjecttargeted exome sequencing
dc.subjectTP53 gene
dc.subjecttumor differentiation
dc.subjectUAP1 gene
dc.subjectwhole exome sequencing
dc.subjectanimal
dc.subjectDNA microarray
dc.subjectdna mutational analysis
dc.subjectflow cytometry
dc.subjectgene silencing
dc.subjectgenetics
dc.subjecthigh throughput sequencing
dc.subjectliposarcoma
dc.subjectmouse
dc.subjectnonobese diabetic mouse
dc.subjectSCID mouse
dc.subjectsoft tissue tumor
dc.subjectxenograft
dc.subjectAnimals
dc.subjectDNA Mutational Analysis
dc.subjectFlow Cytometry
dc.subjectGene Knockdown Techniques
dc.subjectHeterografts
dc.subjectHigh-Throughput Nucleotide Sequencing
dc.subjectHumans
dc.subjectLiposarcoma
dc.subjectMice
dc.subjectMice, Inbred NOD
dc.subjectMice, SCID
dc.subjectOligonucleotide Array Sequence Analysis
dc.subjectPolymerase Chain Reaction
dc.subjectPolymorphism, Single Nucleotide
dc.subjectSoft Tissue Neoplasms
dc.subjectTranscriptome
dc.typeArticle
dc.contributor.departmentCANCER SCIENCE INSTITUTE OF SINGAPORE
dc.contributor.departmentCIVIL AND ENVIRONMENTAL ENGINEERING
dc.contributor.departmentMEDICINE
dc.description.doi10.18632/oncotarget.6464
dc.description.sourcetitleOncotarget
dc.description.volume6
dc.description.issue40
dc.description.page42429-42444
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_18632_oncotarget_6464.pdf2.58 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.