Please use this identifier to cite or link to this item: https://doi.org/10.1186/s12963-018-0173-5
DC FieldValue
dc.titleQuantifying temporal trends of age-standardized rates with odds
dc.contributor.authorTan C.S.
dc.contributor.authorStøer N.
dc.contributor.authorNing Y.
dc.contributor.authorChen Y.
dc.contributor.authorReilly M.
dc.date.accessioned2020-09-09T09:49:55Z
dc.date.available2020-09-09T09:49:55Z
dc.date.issued2018
dc.identifier.citationTan C.S., Støer N., Ning Y., Chen Y., Reilly M. (2018). Quantifying temporal trends of age-standardized rates with odds. Population Health Metrics 16 (1) : 18. ScholarBank@NUS Repository. https://doi.org/10.1186/s12963-018-0173-5
dc.identifier.issn1478-7954
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175349
dc.description.abstractBackground: To quantify temporal trends in age-standardized rates of disease, the convention is to fit a linear regression model to log-transformed rates because the slope term provides the estimated annual percentage change. However, such log-transformation is not always appropriate. Methods: We propose an alternative method using the rank-ordered logit (ROL) model that is indifferent to log-transformation. This method quantifies the temporal trend using odds, a quantity commonly used in epidemiology, and the log-odds corresponds to the scaled slope parameter estimate from linear regression. The ROL method can be implemented by using the commands for proportional hazards regression in any standard statistical package. We apply the ROL method to estimate temporal trends in age-standardized cancer rates worldwide using the cancer incidence data from the Cancer Incidence in Five Continents plus (CI5plus) database for the period 1953 to 2007 and compare the estimates to their scaled counterparts obtained from linear regression with and without log-transformation. Results: We found a strong concordance in the direction and significance of the temporal trends in cancer incidence estimated by all three approaches, and illustrated how the estimate from the ROL model provides a measure that is comparable to a scaled slope parameter estimated from linear regression. Conclusions: Our method offers an alternative approach for quantifying temporal trends in incidence or mortality rates in a population that is invariant to transformation, and whose estimate of trend agrees with the scaled slope from a linear regression model. © 2018 The Author(s).
dc.sourceUnpaywall 20200831
dc.subjectage structure
dc.subjectcancer
dc.subjectdisease incidence
dc.subjectepidemiology
dc.subjectmortality
dc.subjectnumerical method
dc.subjectpublic health
dc.subjectquantitative analysis
dc.subjecttemporal variation
dc.subjecttrend analysis
dc.subjectage standardized rate
dc.subjectArticle
dc.subjectcancer incidence
dc.subjectcancer mortality
dc.subjectcancer screening
dc.subjectepidemiological data
dc.subjecthuman
dc.subjectmortality rate
dc.subjectpopulation risk
dc.subjectpriority journal
dc.subjectrisk factor
dc.subjecttrend study
dc.subjectepidemiology
dc.subjectglobal health
dc.subjectincidence
dc.subjectneoplasm
dc.subjectodds ratio
dc.subjectstandard
dc.subjectstatistical analysis
dc.subjectstatistical model
dc.subjectData Interpretation, Statistical
dc.subjectEpidemiologic Methods
dc.subjectGlobal Health
dc.subjectHumans
dc.subjectIncidence
dc.subjectLinear Models
dc.subjectLogistic Models
dc.subjectModels, Statistical
dc.subjectNeoplasms
dc.subjectOdds Ratio
dc.subjectReference Standards
dc.typeArticle
dc.contributor.departmentSAW SWEE HOCK SCHOOL OF PUBLIC HEALTH
dc.contributor.departmentDEAN'S OFFICE (SSH SCH OF PUBLIC HEALTH)
dc.description.doi10.1186/s12963-018-0173-5
dc.description.sourcetitlePopulation Health Metrics
dc.description.volume16
dc.description.issue1
dc.description.page18
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1186_s12963-018-0173-5.pdf1.06 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.