Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/17/4/043017
DC FieldValue
dc.titleMonte Carlo sampling from the quantum state space. I
dc.contributor.authorShang, J
dc.contributor.authorSeah, Y.-L
dc.contributor.authorNg, H.K
dc.contributor.authorNott, D.J
dc.contributor.authorEnglert, B.-G
dc.date.accessioned2020-09-09T06:47:15Z
dc.date.available2020-09-09T06:47:15Z
dc.date.issued2015
dc.identifier.citationShang, J, Seah, Y.-L, Ng, H.K, Nott, D.J, Englert, B.-G (2015). Monte Carlo sampling from the quantum state space. I. New Journal of Physics 17 : 1-13. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/17/4/043017
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175290
dc.description.abstractHigh-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For illustration, we generate sample points in the probability space of qubits, qutrits, and qubit pairs, both for tomographically complete and incomplete measurements. We use these samples for various purposes: establish the marginal distribution of the purity; compute the fractional volume of separable two-qubit states; and calculate the size of regions with bounded likelihood. © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.sourceUnpaywall 20200831
dc.subjectImportance sampling
dc.subjectMarkov processes
dc.subjectMonte Carlo methods
dc.subjectQuantum computers
dc.subjectQuantum optics
dc.subjectSampling
dc.subjectIncomplete measurements
dc.subjectMarginal distribution
dc.subjectMCMC
dc.subjectMonte Carlo sampling
dc.subjectQuantum Information
dc.subjectQuantum state
dc.subjectRejection samplings
dc.subjectStatistical operators
dc.subjectQuantum theory
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.contributor.departmentYALE-NUS COLLEGE
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.contributor.departmentPHYSICS
dc.description.doi10.1088/1367-2630/17/4/043017
dc.description.sourcetitleNew Journal of Physics
dc.description.volume17
dc.description.page1-13
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_17_4_043017.pdf1.1 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.