Please use this identifier to cite or link to this item: https://doi.org/10.1088/1367-2630/17/4/043018
DC FieldValue
dc.titleMonte Carlo sampling from the quantum state space. II
dc.contributor.authorSeah, Y.-L
dc.contributor.authorShang, J
dc.contributor.authorNg, H.K
dc.contributor.authorNott, D.J
dc.contributor.authorEnglert, B.-G
dc.date.accessioned2020-09-09T06:46:54Z
dc.date.available2020-09-09T06:46:54Z
dc.date.issued2015
dc.identifier.citationSeah, Y.-L, Shang, J, Ng, H.K, Nott, D.J, Englert, B.-G (2015). Monte Carlo sampling from the quantum state space. II. New Journal of Physics 17 : 43018. ScholarBank@NUS Repository. https://doi.org/10.1088/1367-2630/17/4/043018
dc.identifier.issn1367-2630
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175288
dc.description.abstractHigh-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration. © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
dc.publisherInstitute of Physics Publishing
dc.sourceUnpaywall 20200831
dc.subjectHamiltonians
dc.subjectMarkov processes
dc.subjectMonte Carlo methods
dc.subjectQuantum computers
dc.subjectQuantum optics
dc.subjectSampling
dc.subjectHamiltonian dynamics
dc.subjectHybrid Monte Carlo
dc.subjectMarkov chain Monte Carlo method
dc.subjectMonte Carlo sampling
dc.subjectObjective functions
dc.subjectPhysical parameters
dc.subjectQuantum Information
dc.subjectQuantum state
dc.subjectQuantum theory
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.contributor.departmentYALE-NUS COLLEGE
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1088/1367-2630/17/4/043018
dc.description.sourcetitleNew Journal of Physics
dc.description.volume17
dc.description.page43018
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1088_1367-2630_17_4_043018.pdf1.21 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.