Please use this identifier to cite or link to this item: https://doi.org/10.1126/science.aao1401
DC FieldValue
dc.titleSpectroscopic signatures of localization with interacting photons in superconducting qubits
dc.contributor.authorRoushan, P
dc.contributor.authorNeill, C
dc.contributor.authorTangpanitanon, J
dc.contributor.authorBastidas, V.M
dc.contributor.authorMegrant, A
dc.contributor.authorBarends, R
dc.contributor.authorChen, Y
dc.contributor.authorChen, Z
dc.contributor.authorChiaro, B
dc.contributor.authorDunsworth, A
dc.contributor.authorFowler, A
dc.contributor.authorFoxen, B
dc.contributor.authorGiustina, M
dc.contributor.authorJeffrey, E
dc.contributor.authorKelly, J
dc.contributor.authorLucero, E
dc.contributor.authorMutus, J
dc.contributor.authorNeeley, M
dc.contributor.authorQuintana, C
dc.contributor.authorSank, D
dc.contributor.authorVainsencher, A
dc.contributor.authorWenner, J
dc.contributor.authorWhite, T
dc.contributor.authorNeven, H
dc.contributor.authorAngelakis, D.G
dc.contributor.authorMartinis, J
dc.date.accessioned2020-09-09T04:15:26Z
dc.date.available2020-09-09T04:15:26Z
dc.date.issued2017
dc.identifier.citationRoushan, P, Neill, C, Tangpanitanon, J, Bastidas, V.M, Megrant, A, Barends, R, Chen, Y, Chen, Z, Chiaro, B, Dunsworth, A, Fowler, A, Foxen, B, Giustina, M, Jeffrey, E, Kelly, J, Lucero, E, Mutus, J, Neeley, M, Quintana, C, Sank, D, Vainsencher, A, Wenner, J, White, T, Neven, H, Angelakis, D.G, Martinis, J (2017). Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358 (6367) : 1175-1179. ScholarBank@NUS Repository. https://doi.org/10.1126/science.aao1401
dc.identifier.issn0036-8075
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175144
dc.description.abstractQuantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field—the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter. © 2017, American Association for the Advancement of Science. All rights reserved.
dc.publisherAmerican Association for the Advancement of Science
dc.sourceUnpaywall 20200831
dc.subjectquantum dot
dc.subjectdetection method
dc.subjectelectromagnetic field
dc.subjectelectron
dc.subjectenergy
dc.subjectphysics
dc.subjectspectroscopy
dc.subjectsuperconductivity
dc.subjecttwo-dimensional modeling
dc.subjectwave spectrum
dc.subjectArticle
dc.subjectelectron transport
dc.subjectenergy
dc.subjectmagnetic field
dc.subjectmolecular dynamics
dc.subjectmolecular interaction
dc.subjectphoton
dc.subjectpriority journal
dc.subjectsimulation
dc.subjectspectroscopy
dc.subjectstatistical analysis
dc.subjectsuperconductivity
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1126/science.aao1401
dc.description.sourcetitleScience
dc.description.volume358
dc.description.issue6367
dc.description.page1175-1179
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1126_science_aao1401.pdf810.04 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.