Please use this identifier to cite or link to this item: https://doi.org/10.1128/AAC.02107-17
DC FieldValue
dc.titleVerapamil targets membrane energetics in mycobacterium tuberculosis
dc.contributor.authorChen, C
dc.contributor.authorGardete, S
dc.contributor.authorJansen, R.S
dc.contributor.authorShetty, A
dc.contributor.authorDick, T
dc.contributor.authorRhee, K.Y
dc.contributor.authorDartoisa, V
dc.date.accessioned2020-09-09T04:09:10Z
dc.date.available2020-09-09T04:09:10Z
dc.date.issued2018
dc.identifier.citationChen, C, Gardete, S, Jansen, R.S, Shetty, A, Dick, T, Rhee, K.Y, Dartoisa, V (2018). Verapamil targets membrane energetics in mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy 62 (5) : e02107-17. ScholarBank@NUS Repository. https://doi.org/10.1128/AAC.02107-17
dc.identifier.issn0066-4804
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/175116
dc.description.abstractMycobacterium tuberculosis kills more people than any other bacterial pathogen and is becoming increasingly untreatable due to the emergence of resistance. Verapamil, an FDA-approved calcium channel blocker, potentiates the effect of several antituberculosis (anti-TB) drugs in vitro and in vivo. This potentiation is widely attributed to inhibition of the efflux pumps of M. tuberculosis, resulting in intrabacterial drug accumulation. Here, we confirmed and quantified verapamil’s synergy with several anti-TB drugs, including bedaquiline (BDQ) and clofazimine (CFZ), but found that the effect is not due to increased intrabacterial drug accumulation. We show that, consistent with its in vitro potentiating effects on anti-TB drugs that target or require oxidative phosphorylation, the cationic amphiphile verapamil disrupts membrane function and induces a membrane stress response similar to those seen with other membrane-active agents. We recapitulated these activities in vitro using inverted mycobacterial membrane vesicles, indicating a direct effect of verapamil on membrane energetics. We observed bactericidal activity against nonreplicating “per-sister” M. tuberculosis that was consistent with such a mechanism of action. In addition, we demonstrated a pharmacokinetic interaction whereby human-equivalent doses of verapamil caused a boost of rifampin exposure in mice, providing a potential explanation for the observed treatment-shortening effect of verapamil in mice receiving first-line drugs. Our findings thus elucidate the mechanistic basis for verapamil’s potentiation of anti-TB drugs in vitro and in vivo and highlight a previously unrecognized role for the membrane of M. tuberculosis as a pharmacologic target. Copyright © 2018 Chen et al.
dc.publisherAmerican Society for Microbiology
dc.sourceUnpaywall 20200831
dc.subjectABC transporter subfamily B
dc.subjectaminoglycoside
dc.subjectamphophile
dc.subjectantimycobacterial agent
dc.subjectbacterial protein
dc.subjectbedaquiline
dc.subjectclofazimine
dc.subjectethambutol
dc.subjectethidium bromide
dc.subjecthygromycin B
dc.subjectisoniazid
dc.subjectlinezolid
dc.subjectmoxifloxacin
dc.subjectoctamer transcription factor
dc.subjectpyrazinamide
dc.subjectrifampicin
dc.subjectstreptomycin
dc.subjecttuberculostatic agent
dc.subjectverapamil
dc.subjectbedaquiline
dc.subjectcalcium channel blocking agent
dc.subjectclofazimine
dc.subjectquinoline derivative
dc.subjecttuberculostatic agent
dc.subjectverapamil
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectantibacterial activity
dc.subjectarea under the curve
dc.subjectArticle
dc.subjectbacterial clearance
dc.subjectbacterial membrane
dc.subjectbactericidal activity
dc.subjectconcentration response
dc.subjectcontrolled study
dc.subjectdrug accumulation
dc.subjectdrug disposition
dc.subjectdrug efficacy
dc.subjectdrug mechanism
dc.subjectdrug penetration
dc.subjectdrug potentiation
dc.subjectdrug targeting
dc.subjectdrug uptake
dc.subjectfractional inhibitory concentration index
dc.subjectgene expression
dc.subjecthuman
dc.subjecthuman cell
dc.subjectin vitro study
dc.subjectin vivo study
dc.subjectmacrophage
dc.subjectmembrane potential
dc.subjectmembrane vesicle
dc.subjectminimum inhibitory concentration
dc.subjectmouse
dc.subjectMycobacterium tuberculosis
dc.subjectnonhuman
dc.subjectoxidative phosphorylation
dc.subjectphagocyte
dc.subjectpharmacodynamics
dc.subjectpriority journal
dc.subjectanimal
dc.subjectcell membrane
dc.subjectdrug effect
dc.subjectdrug potentiation
dc.subjectfemale
dc.subjectmetabolism
dc.subjectmicrobial sensitivity test
dc.subjectMycobacterium tuberculosis
dc.subjectpathology
dc.subjectAnimals
dc.subjectAntitubercular Agents
dc.subjectCalcium Channel Blockers
dc.subjectCell Membrane
dc.subjectClofazimine
dc.subjectDiarylquinolines
dc.subjectDrug Synergism
dc.subjectFemale
dc.subjectHumans
dc.subjectMice
dc.subjectMicrobial Sensitivity Tests
dc.subjectMycobacterium tuberculosis
dc.subjectVerapamil
dc.typeArticle
dc.contributor.departmentMEDICINE
dc.contributor.departmentMICROBIOLOGY AND IMMUNOLOGY
dc.description.doi10.1128/AAC.02107-17
dc.description.sourcetitleAntimicrobial Agents and Chemotherapy
dc.description.volume62
dc.description.issue5
dc.description.pagee02107-17
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1128_AAC_02107-17.pdf755.47 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.