Please use this identifier to cite or link to this item: https://doi.org/10.3390/ma9030134
DC FieldValue
dc.titleReinforcing low-volume fraction nano-tin particulates to monolithical, pure MG for enhanced tensile and compressive response
dc.contributor.authorMeenashisundaram, G.K
dc.contributor.authorNai, M.H
dc.contributor.authorAlmajid, A
dc.contributor.authorGupta, M
dc.date.accessioned2020-09-09T01:40:37Z
dc.date.available2020-09-09T01:40:37Z
dc.date.issued2016
dc.identifier.citationMeenashisundaram, G.K, Nai, M.H, Almajid, A, Gupta, M (2016). Reinforcing low-volume fraction nano-tin particulates to monolithical, pure MG for enhanced tensile and compressive response. Materials 9 (3) : 134. ScholarBank@NUS Repository. https://doi.org/10.3390/ma9030134
dc.identifier.issn19961944
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174988
dc.description.abstractNovel Mg (0.58, 0.97, 1.98 and 2.5) vol. % TiN nanocomposites containing titanium nitride (TiN) nanoparticulates of ~20 nm size are successfully synthesized by a disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of Mg-TiN nanocomposites indicate significant grain refinement with Mg 2.5 vol. % TiN exhibiting a minimum grain size of ~11 ?m. X-ray diffraction studies of Mg-TiN nanocomposites indicate that addition of up to 1.98 vol. % TiN nanoparticulates aids in modifying the strong basal texture of pure Mg. An attempt is made to study the effects of the type of titanium (metal or ceramic), size, and volume fraction addition of nanoparticulates on the microstructural and mechanical properties of pure magnesium. Among the major strengthening mechanisms contributing to the strength of Mg-Ti-based nanocomposites, Hall-Petch strengthening was found to play a vital role. The synthesized Mg-TiN nanocomposites exhibited superior tensile and compression properties indicating significant improvement in the fracture strain values of pure magnesium under loading. Under tensile and compression loading the presence of titanium (metal or ductile phase) nanoparticulates were found to contribute more towards the strengthening, whereas ceramics of titanium (brittle phases) contribute more towards the ductility of pure magnesium. © 2016 by the authors.
dc.publisherMDPI AG
dc.sourceUnpaywall 20200831
dc.subjectCeramic materials
dc.subjectCompaction
dc.subjectGrain refinement
dc.subjectGrain size and shape
dc.subjectMagnesium
dc.subjectMagnesium printing plates
dc.subjectNanocomposites
dc.subjectStrengthening (metal)
dc.subjectTensile strength
dc.subjectTitanium
dc.subjectTitanium compounds
dc.subjectVolume fraction
dc.subjectX ray diffraction
dc.subjectCompression properties
dc.subjectDisintegrated melt deposition technique
dc.subjectHall-petch
dc.subjectMicro-structural characterization
dc.subjectNanoparticulates
dc.subjectStrengthening mechanisms
dc.subjectTensile
dc.subjectX-ray diffraction studies
dc.subjectTitanium nitride
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentMECHANOBIOLOGY INSTITUTE
dc.description.doi10.3390/ma9030134
dc.description.sourcetitleMaterials
dc.description.volume9
dc.description.issue3
dc.description.page134
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_ma9030134.pdf4.66 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.