Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms11948
DC FieldValue
dc.titleMadelung and Hubbard interactions in polaron band model of doped organic semiconductors
dc.contributor.authorPng R.-Q.
dc.contributor.authorAng M.C.Y.
dc.contributor.authorTeo M.-H.
dc.contributor.authorChoo K.-K.
dc.contributor.authorTang C.G.
dc.contributor.authorBelaineh D.
dc.contributor.authorChua L.-L.
dc.contributor.authorHo P.K.H.
dc.date.accessioned2020-09-09T01:28:05Z
dc.date.available2020-09-09T01:28:05Z
dc.date.issued2016
dc.identifier.citationPng R.-Q., Ang M.C.Y., Teo M.-H., Choo K.-K., Tang C.G., Belaineh D., Chua L.-L., Ho P.K.H. (2016). Madelung and Hubbard interactions in polaron band model of doped organic semiconductors. Nature Communications 7 : 11948. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms11948
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174936
dc.description.abstractThe standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the €- €? gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine-fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime.
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectanion
dc.subjectaromatic amine
dc.subjectcopolymer
dc.subjectfluorene
dc.subjectorganic compound
dc.subjecttriarylamine
dc.subjectunclassified drug
dc.subjectelectrical property
dc.subjectelectronic equipment
dc.subjectequipment component
dc.subjectorganic matter
dc.subjectpolymer
dc.subjectstandard (reference)
dc.subjectArticle
dc.subjectcalculation
dc.subjectchemical interaction
dc.subjectcurrent density
dc.subjectelectron transport
dc.subjectenergy
dc.subjectenergy transfer
dc.subjectmolecular model
dc.subjectoxidation
dc.subjectpolaron band theory
dc.subjectquantum chemistry
dc.subjectsemiconductor
dc.subjectsurface property
dc.subjecttheory
dc.typeArticle
dc.contributor.departmentDEPT OF PHYSICS
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1038/ncomms11948
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page11948
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms11948.pdf972.61 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.