Please use this identifier to cite or link to this item:
https://doi.org/10.1038/lsa.2014.66
DC Field | Value | |
---|---|---|
dc.title | Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing | |
dc.contributor.author | Yang J. | |
dc.contributor.author | Luo F. | |
dc.contributor.author | Kao T.S. | |
dc.contributor.author | Li X. | |
dc.contributor.author | Ho G.W. | |
dc.contributor.author | Teng J., Luo X. | |
dc.contributor.author | Hong M. | |
dc.date.accessioned | 2020-09-08T02:16:39Z | |
dc.date.available | 2020-09-08T02:16:39Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Yang J., Luo F., Kao T.S., Li X., Ho G.W., Teng J., Luo X., Hong M. (2014). Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Science and Applications 3 : e185. ScholarBank@NUS Repository. https://doi.org/10.1038/lsa.2014.66 | |
dc.identifier.issn | 2047-7538 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/174580 | |
dc.description.abstract | Light collection efficiency is an important factor that affects the performance of many optical and optoelectronic devices. In these devices, the high reflectivity of interfaces can hinder efficient light collection. To minimize unwanted reflection, anti-reflection surfaces can be fabricated by micro/nanopatterning. In this paper, we investigate the fabrication of broadband anti-reflection Si surfaces by laser micro/nanoprocessing. Laser direct writing is applied to create microstructures on Si surfaces that reduce light reflection by light trapping. In addition, laser interference lithography and metal assisted chemical etching are adopted to fabricate the Si nanowire arrays. The anti-reflection performance is greatly improved by the high aspect ratio subwavelength structures, which create gradients of refractive index from the ambient air to the substrate. Furthermore, by decoration of the Si nanowires with metallic nanoparticles, surface plasmon resonance can be used to further control the broadband reflections, reducing the reflection to below 1.0% across from 300 to 1200 nm. An average reflection of 0.8% is achieved. © 2014 CIOMP. | |
dc.source | Unpaywall 20200831 | |
dc.subject | Aspect ratio | |
dc.subject | Fabrication | |
dc.subject | Light reflection | |
dc.subject | Lithography | |
dc.subject | Nanowires | |
dc.subject | Optical waveguides | |
dc.subject | Optoelectronic devices | |
dc.subject | Plasmons | |
dc.subject | Reflection | |
dc.subject | Refractive index | |
dc.subject | Surface plasmon resonance | |
dc.subject | Anti reflection | |
dc.subject | broadband | |
dc.subject | Broadband anti reflections | |
dc.subject | Laser interference lithography | |
dc.subject | Light collection efficiency | |
dc.subject | Metal-assisted chemical etching | |
dc.subject | Sub-wavelength structures | |
dc.subject | Surface plasmons | |
dc.subject | Broadband | |
dc.subject | Silicon | |
dc.type | Article | |
dc.contributor.department | ELECTRICAL AND COMPUTER ENGINEERING | |
dc.description.doi | 10.1038/lsa.2014.66 | |
dc.description.sourcetitle | Light: Science and Applications | |
dc.description.volume | 3 | |
dc.description.page | e185 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
10_1038_lsa_2014_66.pdf | 3.64 MB | Adobe PDF | OPEN | Published | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.