Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-017-00511-w
DC FieldValue
dc.titleEngineering a riboswitch-based genetic platform for the self-directed evolution of acid-Tolerant phenotypes
dc.contributor.authorPham, H.L
dc.contributor.authorWong, A
dc.contributor.authorChua, N
dc.contributor.authorTeo, W.S
dc.contributor.authorYew, W.S
dc.contributor.authorChang, M.W
dc.date.accessioned2020-09-04T03:34:47Z
dc.date.available2020-09-04T03:34:47Z
dc.date.issued2017
dc.identifier.citationPham, H.L, Wong, A, Chua, N, Teo, W.S, Yew, W.S, Chang, M.W (2017). Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-Tolerant phenotypes. Nature Communications 8 (1) : 411. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-017-00511-w
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174402
dc.description.abstractEnvironmental pH is a fundamental signal continuously directing the metabolism and behavior of living cells. Programming the precise cellular response toward environmental pH is, therefore, crucial for engineering cells for increasingly sophisticated functions. Herein, we engineer a set of riboswitch-based pH-sensing genetic devices to enable the control of gene expression according to differential environmental pH. We next develop a digital pH-sensing system to utilize the analogue-sensing behavior of these devices for high-resolution recording of host cell exposure to discrete external pH levels. The application of this digital pH-sensing system is demonstrated in a genetic program that autonomously regulated the evolutionary engineering of host cells for improved tolerance to a broad spectrum of organic acids, a valuable phenotype for metabolic engineering and bioremediation applications. © 2017 The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectacid
dc.subjectcarboxylic acid
dc.subjectacid
dc.subjectbioremediation
dc.subjectcells and cell components
dc.subjectgene expression
dc.subjectgenetic analysis
dc.subjectgenetic engineering
dc.subjectmetabolism
dc.subjectpH
dc.subjectphenotype
dc.subjectacid tolerance
dc.subjectArticle
dc.subjectbioremediation
dc.subjectbiosensor
dc.subjectbiotechnology
dc.subjectcontrolled study
dc.subjectdirected molecular evolution
dc.subjectgene expression
dc.subjectgenetic algorithm
dc.subjectgenetic engineering
dc.subjecthost cell
dc.subjectmetabolic engineering
dc.subjectnonhuman
dc.subjectnucleotide sequence
dc.subjectpH
dc.subjectphenotype
dc.subjectquorum sensing
dc.subjectrecording
dc.subjectriboswitch
dc.subjectself directed evolution
dc.subjectwild type
dc.subjectEscherichia coli
dc.subjectgenetic engineering
dc.subjectgenetics
dc.subjectgenotype
dc.subjectmutation
dc.subjectprocedures
dc.subjectriboswitch
dc.subjectAcids
dc.subjectDirected Molecular Evolution
dc.subjectEscherichia coli
dc.subjectGenetic Engineering
dc.subjectGenotype
dc.subjectHydrogen-Ion Concentration
dc.subjectMutation
dc.subjectPhenotype
dc.subjectRiboswitch
dc.typeArticle
dc.contributor.departmentBIOCHEMISTRY
dc.description.doi10.1038/s41467-017-00511-w
dc.description.sourcetitleNature Communications
dc.description.volume8
dc.description.issue1
dc.description.page411
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-017-00511-w.pdf1.65 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.