Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41419-018-1081-0
DC FieldValue
dc.titleCell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy
dc.contributor.authorHor, J.H
dc.contributor.authorSoh, E.S.-Y
dc.contributor.authorTan, L.Y
dc.contributor.authorLim, V.J.W
dc.contributor.authorSantosa, M.M
dc.contributor.authorWinanto, Institute of Molecular and Cell Biology, 61 Biopolis Drive138673, Singapore, School of Biological Science, Nanyang Technological University637551, Singapore
dc.contributor.authorHo, B.X
dc.contributor.authorFan, Y
dc.contributor.authorSoh, B.-S
dc.contributor.authorNg, S.-Y
dc.date.accessioned2020-09-04T02:22:48Z
dc.date.available2020-09-04T02:22:48Z
dc.date.issued2018
dc.identifier.citationHor, J.H, Soh, E.S.-Y, Tan, L.Y, Lim, V.J.W, Santosa, M.M, Winanto, Institute of Molecular and Cell Biology, 61 Biopolis Drive138673, Singapore, School of Biological Science, Nanyang Technological University637551, Singapore, Ho, B.X, Fan, Y, Soh, B.-S, Ng, S.-Y (2018). Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death and Disease 9 (11) : 1100. ScholarBank@NUS Repository. https://doi.org/10.1038/s41419-018-1081-0
dc.identifier.issn2041-4889
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174353
dc.description.abstractSpinal Muscular Atrophy (SMA) is caused by genetic mutations in the SMN1 gene, resulting in drastically reduced levels of Survival of Motor Neuron (SMN) protein. Although SMN is ubiquitously expressed, spinal motor neurons are one of the most affected cell types. Previous studies have identified pathways uniquely activated in SMA motor neurons, including a hyperactivated ER stress pathway, neuronal hyperexcitability, and defective spliceosomes. To investigate why motor neurons are more affected than other neural types, we developed a spinal organoid model of SMA. We demonstrate overt motor neuron degeneration in SMA spinal organoids, and this degeneration can be prevented using a small molecule inhibitor of CDK4/6, indicating that spinal organoids are an ideal platform for therapeutic discovery. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectcyclin dependent kinase 4 inhibitor
dc.subjectcyclin dependent kinase 6 inhibitor
dc.subjectcyclin dependent kinase inhibitor
dc.subjectunclassified drug
dc.subjectArticle
dc.subjectcell survival
dc.subjectcontrolled study
dc.subjecthuman
dc.subjecthuman cell
dc.subjecthuman tissue
dc.subjectinduced pluripotent stem cell
dc.subjectmotoneuron
dc.subjectnerve cell degeneration
dc.subjectnervous system development
dc.subjectneuroprotection
dc.subjectorganoid
dc.subjectpriority journal
dc.subjectspinal muscular atrophy
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.contributor.departmentPHYSIOLOGY
dc.description.doi10.1038/s41419-018-1081-0
dc.description.sourcetitleCell Death and Disease
dc.description.volume9
dc.description.issue11
dc.description.page1100
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41419-018-1081-0.pdf4.85 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.