Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-05200-w
DC FieldValue
dc.titleOhmic transition at contacts key to maximizing fill factor and performance of organic solar cells
dc.contributor.authorTan J.-K.
dc.contributor.authorPng R.-Q.
dc.contributor.authorZhao C.
dc.contributor.authorHo P.K.H.
dc.date.accessioned2020-09-04T01:46:40Z
dc.date.available2020-09-04T01:46:40Z
dc.date.issued2018
dc.identifier.citationTan J.-K., Png R.-Q., Zhao C., Ho P.K.H. (2018). Ohmic transition at contacts key to maximizing fill factor and performance of organic solar cells. Nature Communications 9 (1) : 3269. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-05200-w
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174209
dc.description.abstractWhile thermodynamic detailed balance limits the maximum power conversion efficiency of a solar cell, the quality of its contacts can further limit the actual efficiency. The criteria for good contacts to organic semiconductors, however, are not well understood. Here, by tuning the work function of poly(3,4-ethylenedioxythiophene) hole collection layers in fine steps across the Fermi-level pinning threshold of the model photoactive layer, poly(3-hexylthiophene):phenyl-C 61 -butyrate methyl ester, in organic solar cells, we obtain direct evidence for a non-ohmic to ohmic transition at the hole contact that lies 0.3 eV beyond its Fermi-level pinning transition. This second transition corresponds to reduction of the photocurrent extraction resistance below the bulk resistance of the cell. Current detailed balance analysis reveals that this extraction resistance is the counterpart of injection resistance, and the measured characteristics are manifestations of charge carrier hopping across the interface. Achieving ohmic transition at both contacts is key to maximizing fill factor without compromising open-circuit voltage nor short-circuit current of the solar cell. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectthiophene derivative
dc.subjectelectricity
dc.subjectfuel cell
dc.subjectperformance assessment
dc.subjectphotovoltaic system
dc.subjectsolar power
dc.subjectthermodynamics
dc.subjectArticle
dc.subjectcurrent density
dc.subjectelectric potential
dc.subjectelectric resistance
dc.subjectfermion
dc.subjectsolar energy
dc.subjectthermodynamics
dc.subjectultraviolet photoelectron spectroscopy
dc.typeArticle
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1038/s41467-018-05200-w
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page3269
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-05200-w.pdf1.15 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.