Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-06828-4
DC FieldValue
dc.titleLewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal–organic frameworks
dc.contributor.authorTan, Y.C
dc.contributor.authorZeng, H.C
dc.date.accessioned2020-09-04T01:45:05Z
dc.date.available2020-09-04T01:45:05Z
dc.date.issued2018
dc.identifier.citationTan, Y.C, Zeng, H.C (2018). Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal–organic frameworks. Nature Communications 9 (1) : 4326. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-06828-4
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174200
dc.description.abstractInteractions between metal nanoparticles (NPs) and metal–organic frameworks (MOFs) in their composite forms have proven to exhibit beneficial properties, such as enhanced catalytic performance through synergistic effects. Herein, we show that Lewis basic sites can be created within an anionic defective MOF by engineering the electronic state of the pendant carboxylate groups situated at the defect sites. This is achieved from the concerted interactions between the pendant carboxylate groups, embedded Pd NPs and charge-balancing cations (M n+ = Ce 3+ , Co 2+ , Ni 2+ , Cu 2+ , Mg 2+ , Li + , Na + or K + ). This work is the first example of generating a new collective property, i.e. Lewis basicity, in metal-carboxylate MOFs. Importantly, the choice of M n+ , used during cation exchange, acts as a convenient parameter to tune the Lewis basicity of the MOF-based nanocomposites. It also provides a facile way to incorporate active metal sites and basic sites within carboxylate-based MOFs to engineer multifunctional nanocatalysts. © 2018, The Author(s).
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectcarboxylic acid
dc.subjectcerium
dc.subjectcobalt
dc.subjectcupric ion
dc.subjectLewis base
dc.subjectlithium ion
dc.subjectmanganese
dc.subjectmetal nanoparticle
dc.subjectmetal organic framework
dc.subjectnanocomposite
dc.subjectnickel
dc.subjectpotassium ion
dc.subjectsodium ion
dc.subjectcatalysis
dc.subjectcatalyst
dc.subjection exchange
dc.subjectmetal
dc.subjectnanocomposite
dc.subjectnanoparticle
dc.subjectorganometallic compound
dc.subjectperformance assessment
dc.subjectArticle
dc.subjectcation exchange
dc.subjectKnoevenagel condensation
dc.subjectnanocatalysis
dc.subjectnanocatalyst
dc.subjectnanoengineering
dc.subjectoxidation
dc.subjectparticle size
dc.subjecttransmission electron microscopy
dc.subjectX ray photoemission spectroscopy
dc.typeArticle
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1038/s41467-018-06828-4
dc.description.sourcetitleNature Communications
dc.description.volume9
dc.description.issue1
dc.description.page4326
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-06828-4.pdf1.36 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.