Please use this identifier to cite or link to this item: https://doi.org/10.1109/JSAIT.2020.2980676
DC FieldValue
dc.titleInformation-Theoretic Lower Bounds for Compressive Sensing with Generative Models
dc.contributor.authorZhaoqiang Liu
dc.contributor.authorJonathan Scarlett
dc.date.accessioned2020-08-04T02:51:43Z
dc.date.available2020-08-04T02:51:43Z
dc.date.issued2020-03
dc.identifier.citationZhaoqiang Liu, Jonathan Scarlett (2020-03). Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models 1 (1) : 292-303. ScholarBank@NUS Repository. https://doi.org/10.1109/JSAIT.2020.2980676
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/171882
dc.description.urihttps://ieeexplore.ieee.org/document/9035653
dc.publisherIEEE
dc.rightsCC0 1.0 Universal
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.typeArticle
dc.contributor.departmentDEPARTMENT OF COMPUTER SCIENCE
dc.description.doi10.1109/JSAIT.2020.2980676
dc.description.volume1
dc.description.issue1
dc.description.page292-303
dc.published.statePublished
dc.grant.idR-252-000-A74-281
dc.grant.fundingagencySingapore National Research Foundation (NRF)
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
LiuScarlett_JSAIT2020.pdf933.63 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons