Please use this identifier to cite or link to this item: https://doi.org/10.1093/biomet/asaa041
DC FieldValue
dc.titleFunctional regression on the manifold with contamination
dc.contributor.authorLin, Zhenhua
dc.contributor.authorYao, Fang
dc.date.accessioned2020-08-04T02:32:59Z
dc.date.available2020-08-04T02:32:59Z
dc.date.issued2020-07-21
dc.identifier.citationLin, Zhenhua, Yao, Fang (2020-07-21). Functional regression on the manifold with contamination. Biometrika. ScholarBank@NUS Repository. https://doi.org/10.1093/biomet/asaa041
dc.identifier.issn00063444
dc.identifier.issn14643510
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/171880
dc.description.abstract<jats:title>Summary</jats:title> <jats:p>We propose a new method for functional nonparametric regression with a predictor that resides on a finite-dimensional manifold, but is observable only in an infinite-dimensional space. Contamination of the predictor due to discrete or noisy measurements is also accounted for. By using functional local linear manifold smoothing, the proposed estimator enjoys a polynomial rate of convergence that adapts to the intrinsic manifold dimension and the contamination level. This is in contrast to the logarithmic convergence rate in the literature of functional nonparametric regression. We also observe a phase transition phenomenon related to the interplay between the manifold dimension and the contamination level. We demonstrate via simulated and real data examples that the proposed method has favourable numerical performance relative to existing commonly used methods.</jats:p>
dc.publisherOxford University Press (OUP)
dc.sourceElements
dc.subjectstat.ME
dc.subjectstat.ME
dc.subject62G05, 62G08 (Primary)
dc.typeArticle
dc.date.updated2020-08-03T12:41:25Z
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1093/biomet/asaa041
dc.description.sourcetitleBiometrika
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1704.03005v4.pdf1.02 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.