Please use this identifier to cite or link to this item:
https://doi.org/10.1093/biomet/asaa041
DC Field | Value | |
---|---|---|
dc.title | Functional regression on the manifold with contamination | |
dc.contributor.author | Lin, Zhenhua | |
dc.contributor.author | Yao, Fang | |
dc.date.accessioned | 2020-08-04T02:32:59Z | |
dc.date.available | 2020-08-04T02:32:59Z | |
dc.date.issued | 2020-07-21 | |
dc.identifier.citation | Lin, Zhenhua, Yao, Fang (2020-07-21). Functional regression on the manifold with contamination. Biometrika. ScholarBank@NUS Repository. https://doi.org/10.1093/biomet/asaa041 | |
dc.identifier.issn | 00063444 | |
dc.identifier.issn | 14643510 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/171880 | |
dc.description.abstract | <jats:title>Summary</jats:title> <jats:p>We propose a new method for functional nonparametric regression with a predictor that resides on a finite-dimensional manifold, but is observable only in an infinite-dimensional space. Contamination of the predictor due to discrete or noisy measurements is also accounted for. By using functional local linear manifold smoothing, the proposed estimator enjoys a polynomial rate of convergence that adapts to the intrinsic manifold dimension and the contamination level. This is in contrast to the logarithmic convergence rate in the literature of functional nonparametric regression. We also observe a phase transition phenomenon related to the interplay between the manifold dimension and the contamination level. We demonstrate via simulated and real data examples that the proposed method has favourable numerical performance relative to existing commonly used methods.</jats:p> | |
dc.publisher | Oxford University Press (OUP) | |
dc.source | Elements | |
dc.subject | stat.ME | |
dc.subject | stat.ME | |
dc.subject | 62G05, 62G08 (Primary) | |
dc.type | Article | |
dc.date.updated | 2020-08-03T12:41:25Z | |
dc.contributor.department | STATISTICS & APPLIED PROBABILITY | |
dc.description.doi | 10.1093/biomet/asaa041 | |
dc.description.sourcetitle | Biometrika | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
1704.03005v4.pdf | 1.02 MB | Adobe PDF | OPEN | Post-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.