Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/171694
DC FieldValue
dc.titleGenerating Privacy-Preserving Synthetic Tabular Data Using Oblivious Variational Autoencoders
dc.contributor.authorSTANLEY KOK
dc.contributor.authorLAKKAMANENI VIVEK HARSHA VARDHAN
dc.date.accessioned2020-07-24T07:28:42Z
dc.date.available2020-07-24T07:28:42Z
dc.date.issued2020-07-18
dc.identifier.citationSTANLEY KOK, LAKKAMANENI VIVEK HARSHA VARDHAN (2020-07-18). Generating Privacy-Preserving Synthetic Tabular Data Using Oblivious Variational Autoencoders. ICML Workshop on Economics of Privacy and Data Labor. ScholarBank@NUS Repository.
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/171694
dc.sourceElements
dc.typeConference Paper
dc.date.updated2020-07-23T09:31:16Z
dc.contributor.departmentDEPARTMENT OF INFORMATION SYSTEMS AND ANALYTICS
dc.description.sourcetitleICML Workshop on Economics of Privacy and Data Labor
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
ICMLEcoPaDLcamerareadypaper.pdf644.75 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.