Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.solmat.2020.110458
DC FieldValue
dc.titleDevelopment of ultra-thin doped poly-Si via LPCVD and ex-situ tube diffusion for passivated contact solar cell applications
dc.contributor.authorYan, Xia
dc.contributor.authorBin Suhaimi, Firdaus
dc.contributor.authorXu, Menglei
dc.contributor.authorYang, Jie
dc.contributor.authorZhang, Xinyu
dc.contributor.authorWang, Qi
dc.contributor.authorJin, Hao
dc.contributor.authorShanmugam, Vinodh
dc.contributor.authorDuttagupta, Shubham
dc.date.accessioned2020-07-21T06:56:33Z
dc.date.available2020-07-21T06:56:33Z
dc.date.issued2020-06-01
dc.identifier.citationYan, Xia, Bin Suhaimi, Firdaus, Xu, Menglei, Yang, Jie, Zhang, Xinyu, Wang, Qi, Jin, Hao, Shanmugam, Vinodh, Duttagupta, Shubham (2020-06-01). Development of ultra-thin doped poly-Si via LPCVD and ex-situ tube diffusion for passivated contact solar cell applications. SOLAR ENERGY MATERIALS AND SOLAR CELLS 209. ScholarBank@NUS Repository. https://doi.org/10.1016/j.solmat.2020.110458
dc.identifier.issn09270248
dc.identifier.issn18793398
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/171637
dc.description.abstract© 2020 Elsevier B.V. Rear side application of polycrystalline silicon (poly-Si) passivated contacts has demonstrated very high efficiencies for single-junction monocrystalline silicon (mono-Si) solar cells. To further improve the device performance, one possible approach is to apply the passivated contact concept to the front side of the solar cell as well. The front side application requires the use of ultra-thin poly-Si layer in order to suppress parasitic absorption. Suitable ex-situ diffusion process should be developed accordingly without damaging the passivation provided by the very thin interface oxide (iOx). In this work, we prepared symmetric lifetime samples of ultra-thin poly-Si (<30 nm) via low pressure chemical vapour deposition (LPCVD) method. Then we studied and optimised the ex-situ POCl3/BBr3 diffusion doping processes. An excellent passivation quality was demonstrated with a high implied open-circuit voltage (iVoc) of up to 730 mV (on symmetric n+ poly-Si lifetime samples) and 700 mV (on symmetric p+ poly-Si lifetime samples). For possible contact formation, we capped the poly-Si with sputter-deposited ZnO:Al, which shows good opto-electrical properties and firing stability at 650 °C.
dc.language.isoen
dc.publisherELSEVIER
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectPhysical Sciences
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectPassivated contact
dc.subjectEx-situ doping
dc.subjectDiffusion
dc.subjectUltra-thin poly-Si
dc.subjectZnO:Al
dc.subjectPOCL3 DIFFUSION
dc.subjectSILICON
dc.subjectEFFICIENCY
dc.subjectINTERFACE
dc.subjectTHICKNESS
dc.subjectPRESSURE
dc.subjectFILMS
dc.subjectZNOAL
dc.typeArticle
dc.date.updated2020-07-06T10:33:10Z
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.description.doi10.1016/j.solmat.2020.110458
dc.description.sourcetitleSOLAR ENERGY MATERIALS AND SOLAR CELLS
dc.description.volume209
dc.published.statePublished
dc.description.redepositcompleted
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Post-print.pdfAccepted version1.43 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.