Please use this identifier to cite or link to this item:
https://doi.org/10.1021/acsenergylett.0c00763
DC Field | Value | |
---|---|---|
dc.title | Rapid Vapor-Phase Deposition of High-Mobility p-Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices | |
dc.contributor.author | Jagt, Robert A | |
dc.contributor.author | Huq, Tahmida N | |
dc.contributor.author | Hill, Sam A | |
dc.contributor.author | Thway, Maung | |
dc.contributor.author | Liu, Tianyuan | |
dc.contributor.author | Napari, Mari | |
dc.contributor.author | Roose, Bart | |
dc.contributor.author | Gałkowski, Krzysztof | |
dc.contributor.author | Li, Weiwei | |
dc.contributor.author | Lin, Serena Fen | |
dc.contributor.author | Stranks, Samuel D | |
dc.contributor.author | MacManus-Driscoll, Judith L | |
dc.contributor.author | Hoye, Robert LZ | |
dc.date.accessioned | 2020-07-17T08:42:43Z | |
dc.date.available | 2020-07-17T08:42:43Z | |
dc.date.issued | 2020-06-22 | |
dc.identifier.citation | Jagt, Robert A, Huq, Tahmida N, Hill, Sam A, Thway, Maung, Liu, Tianyuan, Napari, Mari, Roose, Bart, Gałkowski, Krzysztof, Li, Weiwei, Lin, Serena Fen, Stranks, Samuel D, MacManus-Driscoll, Judith L, Hoye, Robert LZ (2020-06-22). Rapid Vapor-Phase Deposition of High-Mobility p-Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices. ACS Energy Letters : 2456-2465. ScholarBank@NUS Repository. https://doi.org/10.1021/acsenergylett.0c00763 | |
dc.identifier.issn | 23808195 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/171579 | |
dc.description.abstract | Perovskite solar cells (PSCs) with transparent electrodes can be integrated with existing solar panels in tandem configurations to increase the power conversion efficiency. A critical layer in semi-transparent PSCs is the inorganic buffer layer, which protects the PSC against damage when the transparent electrode is sputtered on top. The development of n-i-p structured semi-transparent PSCs has been hampered by the lack of suitable p-type buffer layers. In this work we develop a p-type CuOx buffer layer, which can be grown uniformly over the perovskite device without damaging the perovskite or organic charge transport layers, can be grown using industrially scalable techniques and has high hole mobility (4.3 +/- 2 cm2 V-1 s-1), high transmittance (>95%), and a suitable ionisation potential for hole extraction (5.3 +/- 0.2 eV). Semi-transparent PSCs with efficiencies up to 16.7% are achieved using the CuOx buffer layer. Our work demonstrates a new approach to integrate PSCs into tandem configurations, as well as enable the development of other devices that need high quality p-type layers. | |
dc.publisher | American Chemical Society | |
dc.source | Elements | |
dc.subject | Physics.app-ph | |
dc.type | Article | |
dc.date.updated | 2020-07-16T06:58:32Z | |
dc.contributor.department | SOLAR ENERGY RESEARCH INST OF S'PORE | |
dc.description.doi | 10.1021/acsenergylett.0c00763 | |
dc.description.sourcetitle | ACS Energy Letters | |
dc.description.page | 2456-2465 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Jagt-p-type-paper-submitted-version.pdf | Submitted version | 1.38 MB | Adobe PDF | OPEN | Pre-print | View/Download |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.