Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/170920
DC FieldValue
dc.titleBandgap tunability at single-layer molybdenum disulphide grain boundaries
dc.contributor.authorHuang, Yu Li
dc.contributor.authorChen, Yifeng
dc.contributor.authorZhang, Wenjing
dc.contributor.authorQuek, Su Ying
dc.contributor.authorChen, Chang-Hsiao
dc.contributor.authorLi, Lain-Jong
dc.contributor.authorHsu, Wei-Ting
dc.contributor.authorChang, Wen-Hao
dc.contributor.authorZheng, Yu Jie
dc.contributor.authorChen, Wei
dc.contributor.authorWee, Andrew TS
dc.date.accessioned2020-07-07T08:38:04Z
dc.date.available2020-07-07T08:38:04Z
dc.date.issued2015-02-17
dc.identifier.citationHuang, Yu Li, Chen, Yifeng, Zhang, Wenjing, Quek, Su Ying, Chen, Chang-Hsiao, Li, Lain-Jong, Hsu, Wei-Ting, Chang, Wen-Hao, Zheng, Yu Jie, Chen, Wei, Wee, Andrew TS (2015-02-17). Bandgap tunability at single-layer molybdenum disulphide grain boundaries. NATURE COMMUNICATIONS 6 (1). ScholarBank@NUS Repository.
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/170920
dc.description.abstractTwo-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.
dc.language.isoen
dc.publisherNATURE PUBLISHING GROUP
dc.sourceElements
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectTRANSITION-METAL DICHALCOGENIDES
dc.subjectMAGNETIC-PROPERTIES
dc.subjectMONOLAYER MOS2
dc.subjectSTRAIN
dc.subjectGRAPHENE
dc.subjectPHOTOLUMINESCENCE
dc.subjectSPECTROSCOPY
dc.subjectDEFECTS
dc.subjectBILAYER
dc.subjectGROWTH
dc.typeArticle
dc.date.updated2020-07-06T08:51:49Z
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentPHYSICS
dc.description.sourcetitleNATURE COMMUNICATIONS
dc.description.volume6
dc.description.issue1
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
15WeeQuekNatComm bandgap tunability at single layer molybdenum disulphide grain boundaries.pdfPublished1.06 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.