Please use this identifier to cite or link to this item: https://doi.org/10.1002/anie.201700411
DC FieldValue
dc.titleElasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains
dc.contributor.authorYuan Guohua
dc.contributor.authorLE SHIMIN
dc.contributor.authorYAO MINGXI
dc.contributor.authorQian hui
dc.contributor.authorZhou Xin
dc.contributor.authorYAN JIE
dc.contributor.authorCHEN HU
dc.date.accessioned2020-07-01T08:25:36Z
dc.date.available2020-07-01T08:25:36Z
dc.date.issued2017-05-08
dc.identifier.citationYuan Guohua, LE SHIMIN, YAO MINGXI, Qian hui, Zhou Xin, YAN JIE, CHEN HU (2017-05-08). Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angewandte Chemie (International ed. in English) 129 (20) : 5582-5585. ScholarBank@NUS Repository. https://doi.org/10.1002/anie.201700411
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/170838
dc.description.abstractThe giant protein titin plays a critical role in regulating the passive elasticity of muscles, mainly through the stochastic unfolding and refolding of its numerous immunoglobulin domains in the I‐band of sarcomeres. The unfolding dynamics of titin immunoglobulin domains at a force range greater than 100 pN has been studied by atomic force microscopy, while that at smaller physiological forces has not been measured before. By using magnetic tweezers, it is found that the titin I27 domain unfolds in a surprising non‐monotonic force‐dependent manner at forces smaller than 100 pN, with the slowest unfolding rate occurring around 22 pN. We further demonstrate that a model with single unfolding pathway taking into account the elasticity of the transition state can reproduce the experimental results. These results provide important novel insights into the regulation mechanism of the passive elasticity of muscle tissues.
dc.language.isoen
dc.publisherWiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
dc.subjectBell's model
dc.subjectcatch bonds
dc.subjectProtein Unfolding
dc.subjectTitin
dc.subjectTransition states
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentMECHANOBIOLOGY INSTITUTE
dc.description.doi10.1002/anie.201700411
dc.description.sourcetitleAngewandte Chemie (International ed. in English)
dc.description.volume129
dc.description.issue20
dc.description.page5582-5585
dc.description.codenACIEAY
dc.published.statePublished
dc.grant.idNRF-NRFI2016-03
dc.grant.idB16029
dc.grant.id2013121005
dc.grant.id11474237
dc.grant.id11574310
dc.grant.fundingagencyNational Research Foundation (NRF), Prime Minister's Office, Singapore
dc.grant.fundingagencyMinistry of Education, China
dc.grant.fundingagencyFundamental Research Funds for the Central Universities, China
dc.grant.fundingagencyNational Nature Science Foundation of China
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Yuan_et_al-2017-Angewandte_Chemie.pdf1.37 MBAdobe PDF

CLOSED

Published
Accepted-Manuscript-Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.pdf1.64 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.